Symbolic Limited Lookahead Control for Best-effort Dynamic Computing Resource Management

Nicolas Berthier

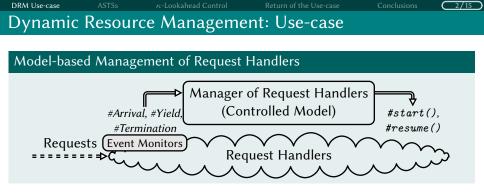
University of Liverpool

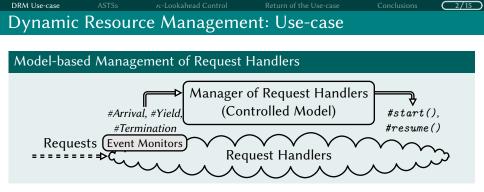
Hervé Marchand

INRIA Rennes Bretagne Atlantique Éric Rutten

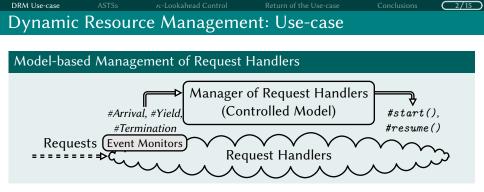
Université Grenoble Alpes INRIA, CNRS

WODES 2018 – May 30





Example (Request Handler Behavior)



Example (Request Handler Behavior)

Symbolic Modeling Principle

Location \rightsquigarrow Counter state variable Event/ command \rightsquigarrow Non-controllable/ controllable input variable

Example (Behavior of One Request Handler)

Example (Arithmetic Symbolic Transition System S_{rh})

$$X = \langle init, wait, active: \mathbb{Z}^{3} \rangle$$

$$U = \langle create, yield, end: \mathbb{Z}^{3} \rangle$$

$$C = \langle start, resume: \mathbb{Z}^{2} \rangle$$

$$T = \begin{cases} init := init - start + create \\ wait := wait + start + yield - resume \\ active := active + resume - yield - end \end{cases}$$

$$A = start \ge 0 \land resume \ge 0 \land yield \ge 0 \land create \ge 0 \land end \ge 0 \land start \le init \land resume \le wait \land yield + end \le active \end{cases}$$

$$X_{0} = init = 0 \land wait = 0 \land active = 0$$

Example (Management Goals as Control Objectives for $S_{\rm rh}$)

Restricting the number of started handlers

• *e.g.*, wait + active ≤ 42

Minimizing the number of non-started handlers

 $\leftarrow Optimization$

 \leftarrow Safety

• *i.e.*, Minimizing *init*

- Given S and a Control Objective o
- Compute a Controller $K \in Pred(X \cup U \cup C)$ (a Predicate involving variables in X, U, and C) s.t S_K fulfills o

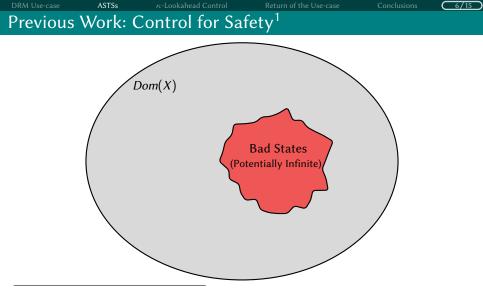
Interpretation / Semantics of S_K

Start in
$$q \in Dom(X)$$
 s.t $q \models X_0$

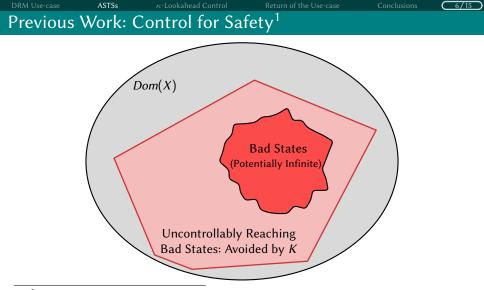
- ► Repeat 1. Receive Admissible $v \in Dom(U)$ (s.t $\exists \gamma \in Dom(C), (q, v, \gamma) \models A$)
 - 2. Choose $\gamma \in Dom(C)$ s.t $(q, v, \gamma) \models K$

3. $q \leftarrow T(q, v, \gamma)$

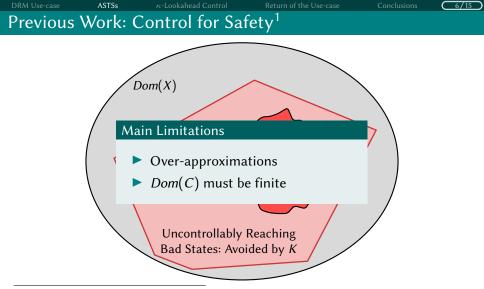
- ▶ Block at step 1. if $\nexists(v, \gamma) \in Dom(U) \times Dom(C), (q, v, \gamma) \models A$
- Deadlock at step 2. if $\nexists \gamma \in Dom(C), (q, v, \gamma) \models K$



¹Nicolas Berthier and Hervé Marchand. "Discrete Controller Synthesis for Infinite State Systems with ReaX". In: 12th Int. Workshop on Discrete Event Systems. WODES '14. Cachan, France: IFAC, May 2014, pp. 46–53; Nicolas Berthier and Hervé Marchand. "Deadlock-Free Discrete Controller Synthesis for Infinite State Systems". In: 54th IEEE Conference on Decision and Control. CDC '15. Dec. 2015.



¹Nicolas Berthier and Hervé Marchand. "Discrete Controller Synthesis for Infinite State Systems with ReaX". In: *12th Int. Workshop on Discrete Event Systems*. WODES '14. Cachan, France: IFAC, May 2014, pp. 46–53; Nicolas Berthier and Hervé Marchand. "Deadlock-Free Discrete Controller Synthesis for Infinite State Systems". In: *54th IEEE Conference on Decision and Control*. CDC '15. Dec. 2015.



¹Nicolas Berthier and Hervé Marchand. "Discrete Controller Synthesis for Infinite State Systems with ReaX". In: 12th Int. Workshop on Discrete Event Systems. WODES '14. Cachan, France: IFAC, May 2014, pp. 46–53; Nicolas Berthier and Hervé Marchand. "Deadlock-Free Discrete Controller Synthesis for Infinite State Systems". In: 54th IEEE Conference on Decision and Control. CDC '15. Dec. 2015.

Best-effort Co	ntrol		

Best-effort Control

Compute a Controller K s.t $S_{/K}$ "does its best" to fulfill its objectives

DRM Use-case	ASTSs	κ -Lookahead Control	Return of the Use-case	(7/15)
Best-effort	Contro	1		

Best-effort Control

Compute a Controller K s.t $S_{/K}$ "does its best" to fulfill its objectives

Rationale

- Targeting non-critical application domains
- ▶ Handle infinite *Dom*(*C*) (in addition to infinite *Dom*(*X*) and *Dom*(*U*))

- 1. Given $\kappa \in \mathbb{N}^+$
- Introduce additional input variables that represent *future inputs* (both controllable and non-controllable) to peek into κ future steps with κ-lookahead expressions: U₂,..., U_κ, C₂,..., C_κ

- 1. Given $\kappa \in \mathbb{N}^+$
- 2. Introduce additional input variables that represent *future inputs* (both controllable and non-controllable) to peek into κ future steps with κ -lookahead expressions: $U_2, \ldots, U_{\kappa}, C_2, \ldots, C_{\kappa}$
- 3. Specify *desirable* paths \mathcal{R}_{κ} of length κ using a κ -lookahead predicate
 - ▶ belongs to $Pred(X \cup U \cup U_2 \cup \ldots \cup U_{\kappa} \cup C \cup C_2 \cup \ldots \cup C_{\kappa})$
 - \mathcal{R}_{κ} encodes a potentially infinite set of finite paths

- 1. Given $\kappa \in \mathbb{N}^+$
- 2. Introduce additional input variables that represent *future inputs* (both controllable and non-controllable) to peek into κ future steps with κ -lookahead expressions: $U_2, \ldots, U_{\kappa}, C_2, \ldots, C_{\kappa}$
- 3. Specify *desirable* paths \mathcal{R}_{κ} of length κ using a κ -lookahead predicate
 - ▶ belongs to $Pred(X \cup U \cup U_2 \cup \ldots \cup U_{\kappa} \cup C \cup C_2 \cup \ldots \cup C_{\kappa})$
 - \mathcal{R}_{κ} encodes a potentially infinite set of finite paths
- 4. Compute *controllable prefixes* of \mathcal{R}_{κ} iteratively, down to \mathcal{R}_{1}
 - Alternating universal/existential elimination of the U_i's and C_i's
- 5. Build a *strict* controller K from \mathcal{R}_1
 - S/ $_{K}$ deadlocks whenever one cannot choose values for controllable variables to follow a complete path in \mathcal{R}_{κ}

- 1. Given $\kappa \in \mathbb{N}^+$
- 2. Introduce additional input variables that represent *future inputs* (both controllable and non-controllable) to peek into κ future steps with κ -lookahead expressions: $U_2, \ldots, U_{\kappa}, C_2, \ldots, C_{\kappa}$
- 3. Specify *desirable* paths \mathcal{R}_{κ} of length κ using a κ -lookahead predicate
 - ▶ belongs to $Pred(X \cup U \cup U_2 \cup \ldots \cup U_{\kappa} \cup C \cup C_2 \cup \ldots \cup C_{\kappa})$
 - \mathcal{R}_{κ} encodes a potentially infinite set of finite paths
- 4. Compute *controllable prefixes* of \mathcal{R}_{κ} iteratively, down to \mathcal{R}_{1}
 - Alternating universal/existential elimination of the U_i's and C_i's
- 5. Build a *strict* controller K from \mathcal{R}_1
 - S/ $_{K}$ deadlocks whenever one cannot choose values for controllable variables to follow a complete path in \mathcal{R}_{κ}
- 6. Transform *K* for *best-effort* and/or *recovery*

DRM Use-case ASTSs *k*-Lookahead Control Return of the Use-case Conclusions <u>9/15</u> Symbolic *k*-Lookahead: Control Objectives

Definition (Desirable Paths Enforcing $\Phi \in Pred(X)$ for κ Steps Ahead)

$$R_{\kappa} = \Phi|_1 \wedge \ldots \wedge \Phi|_{\kappa}$$

DRM Use-case ASTSs *k*-Lookahead Control Return of the Use-case Conclusions <u>9/15</u> Symbolic *k*-Lookahead: Control Objectives

Definition (Desirable Paths Enforcing $\Phi \in Pred(X)$ for κ Steps Ahead)

$$R_{\kappa} = \Phi|_1 \wedge \ldots \wedge \Phi|_{\kappa}$$

Definition (Desirable Paths Minimizing $e \in GuardLin(X)$ over κ Steps)

• C_1, \ldots, C_{κ} are the future non-controllable inputs (with $C_1 = C$) • $C'_1, \ldots, C'_{\kappa}$ encode "alternative" future non-controllable inputs • $E_{\kappa} = \sum_{i \in \{1, \ldots, \kappa\}} e|_i$ • $A_{\kappa} = \bigwedge_{i \in \{1, \ldots, \kappa\}} A|_i$ • $E'_{\kappa} = E_{\kappa}[C_1 \cup \ldots \cup C_{\kappa}/C'_1 \cup \ldots \cup C'_{\kappa}]$ $R_{\kappa} = \nexists_{C'_1 \cup \ldots \cup C'_{\kappa}} (A_{\kappa} \Rightarrow (A'_{\kappa} \land E'_{\kappa} < E_{\kappa}))$

Definition (Strict Controller K_{κ} for Desirable Paths \mathcal{R}_{κ})

 $S_{\kappa_{\kappa}}$ deadlocks in a state $q \in Dom(X)$ with non-controllable inputs $v \in Dom(U)$ unless it can follow a full path belonging to \mathcal{R}_{κ}

Definition (Strict Controller K_{κ} for Desirable Paths \mathcal{R}_{κ})

 $S_{\kappa_{\kappa}}$ deadlocks in a state $q \in Dom(X)$ with non-controllable inputs $v \in Dom(U)$ unless it can follow a full path belonging to \mathcal{R}_{κ}

Definition (Best-effort Controller BestEffort (*K*) from Controller *K* for *S*)

 $S_{\text{BestEffort}(K)}$ behaves as S_K whenever it does not deadlock, as S otherwise

Definition (Strict Controller K_{κ} for Desirable Paths \mathcal{R}_{κ})

 $S_{K_{\kappa}}$ deadlocks in a state $q \in Dom(X)$ with non-controllable inputs $v \in Dom(U)$ unless it can follow a full path belonging to \mathcal{R}_{κ}

Definition (Best-effort Controller BestEffort (*K*) from Controller *K* for *S*)

 $S_{\text{BestEffort}(K)}$ behaves as S_K whenever it does not deadlock, as S otherwise

Definition (1-Step Recovering Controller Recover $(K|\mathcal{R}_{\kappa}))$

 $S_{\text{Recover}(K|\mathcal{R}_{\kappa})}$ behaves as S_{K} whenever $S_{K_{\kappa}}$ would not deadlock, or transitions in one step to a state where it can follow a full path belonging to \mathcal{R}_{κ} whenever possible

Example (Safety Objective)

- Restricting the number of started handlers
- Strict safety control enforcing $\Phi = (wait + active \leq 42)$

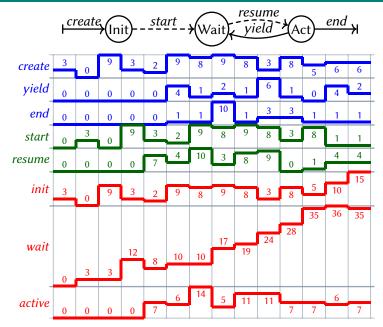
 $\sim K_{\Phi}$

Example (Optimization Objective)

- Minimizing the number of non-started handlers
- Strict minimization of *init* on $S_{K_{\Phi}}$ (*i.e.*, with $A = K_{\Phi}$)

 $\rightsquigarrow K_{\omega}$

One Execution Trace of $S_{\rm rh}/\kappa_{\omega}$



Conclusions

12/15

Return of the Use-case

DRM Use-case ASTSs rs-Lookahead Control Return of the Use-case Conclusions 13/15 Experimental Assessment of Practicality (using ReaX)

Benchmarks Derived from the Use-case

Parallel composition: $\|_{i \in \{1,...,N\}} S_{rhi} \longrightarrow N$ kinds of request handlers

· Objective: balance the number of active request handlers of each kind

Alt: S_{rh} with *N* counters *active_i*, *resume_i*, *yield_i*, and *end_i*

 \rightsquigarrow *N* pools of active request handlers

Objective: bound the number of non-started request handlers

N:	2	3	6	9
Parallel, κ =1	0.04	0.06	0.28	1.18
Alt, κ =1	0.03	0.04	0.06	0.12
Alt, κ =2	0.10	0.15	0.49	1.76
Alt, κ =1, 1-step recovery	0.05	0.09	0.31	1.73
Alt, κ =2, 1-step recovery	0.14	0.22	0.90	2.02
Alt, κ =3, 1-step recovery	0.27	0.48	1.99	2.78
Alt, κ =4, 1-step recovery	0.53	1.04	4.30	6.87

Table: Synthesis Times (in Seconds)

Limited Lookahead

Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. "Limited lookahead policies in supervisory control of discrete event systems". In: *IEEE Trans. Autom. Control* 37.12 (1992), pp. 1921–1935

- Language-theoretic framework, N-step ahead projection of behaviors
- Conservative and optimistic attitudes to accommodate uncertainties

Modeling

Bengt Lennartson et al. "Unified Model for Synthesis and Optimization of Discrete Event and Hybrid Systems". In: *12th Int. Workshop on Discrete Event Systems*. WODES '14. Cachan, France: IFAC, May 2014, pp. 86–92

- Modeling principle similar to ours, though with finite counters (EFAs)
- "Performance" optimization (minimizing the make span of tokens)

Symbolic Algorithms for Best-effort κ -Lookahead Control

- Non-critical safety & optimization
- Control for recovery
- Drop requirement for finite Dom(C)
- Implementation available in ReaX²

Future Works

- Benchmark with models involving finite variables
- Using MILP or SMT solvers
 - Challenges with universal quantifiers
- Identify "good" models for lookahead

²http://reatk.gforge.inria.fr/

- Symbolic κ -Lookahead
- Return of the Dynamic Resource Management Use-case

Symbolic κ -Lookahead: Peeking into the Future

Representing κ Future Inputs

Define new indexed variables U_2, \ldots, U_κ and C_2, \ldots, C_κ from U and C

$$U_1 = U, C_1 = C, \text{ and } I_i = U_i \uplus C_i$$

 $(\kappa \in \mathbb{N}^+)$

Symbolic κ -Lookahead: Peeking into the Future

Representing κ Future Inputs

Define new indexed variables U_2, \ldots, U_k and C_2, \ldots, C_k from U and C

$$U_1 = U, C_1 = C, \text{ and } I_i = U_i \uplus C_i$$

i-lookahead Expressions

$$(i \in \{0,\ldots,\kappa\})$$

 $e|_i \in Expr(X \cup I_1 \cup \ldots \cup I_i)$ symbolically denotes the (potential) value of $e \in Expr(X)$ *i* steps ahead

 $(\kappa \in \mathbb{N}^+)$

Symbolic κ -Lookahead: Peeking into the Future

Representing κ Future Inputs

Define new indexed variables U_2, \ldots, U_{κ} and C_2, \ldots, C_{κ} from U and C

$$\blacktriangleright U_1 = U, C_1 = C, \text{ and } I_i = U_i \uplus C_i$$

i-lookahead Expressions

$$(i \in \{0,\ldots,\kappa\})$$

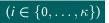
 $e|_i \in Expr(X \cup I_1 \cup \ldots \cup I_i)$ symbolically denotes the (potential) value of $e \in Expr(X)$ *i* steps ahead

Example (2-lookahead of $e \in GuardLin(X)$ with $X = \langle x : \mathbb{Z} \rangle$ and $I = \langle b : \mathbb{B} \rangle$)

With
$$T = \langle x := \text{ if } x \leq 42 \land b \text{ then } x + 1 \text{ else } x \rangle$$
 and $e = x$:
 $e|_1 = \begin{cases} x+1 & \text{ if } x \leq 42 \land b \\ x & \text{ otherwise} \end{cases}$
 $e|_2 = \begin{cases} x+2 & \text{ if } x \leq 41 \land b \land b_2 \\ x+1 & \text{ if } x \leq 42 \land (\neg b \land b_2 \lor b \land \neg b_2) \lor x = 42 \land b \land b_2 \\ x & \text{ otherwise} \end{cases}$

Symbolic κ -Lookahead: Control over Sliding Windows

Sliding Windows as *i*-paths \mathcal{R}_i



 $\mathcal{R}_i \subseteq Dom(X) \times Dom(I)^i$: Set of paths of *i* transitions

• Desirable κ -paths \mathcal{R}_{κ} given as $R_{\kappa} \in Pred(X \cup I_1 \cup \ldots \cup I_{\kappa})$

Symbolic κ -Lookahead: Control over Sliding Windows

Sliding Windows as *i*-paths \mathcal{R}_i

 $(i \in \{0,\ldots,\kappa\})$

 $\mathcal{R}_i \subseteq Dom(X) \times Dom(I)^i$: Set of paths of *i* transitions

• Desirable κ -paths \mathcal{R}_{κ} given as $R_{\kappa} \in Pred(X \cup I_1 \cup \ldots \cup I_{\kappa})$

Direct Controllable Prefixes $\overline{\mathcal{R}}_i$ of \mathcal{R}_{i+1}

 $(i \in \{0,\ldots,\kappa\})$

The direct controllable prefixes of (i + 1)-paths $\mathcal{R}_{i+1} \subseteq Dom(X) \times Dom(I)^{i+1}$ consist of all *i*-paths $\mathcal{R}_i \subseteq Dom(X) \times Dom(I)^i$ such that, after following an *i*-path in \mathcal{R}_i , a valuation for controllable variables always exists so that *S* remains on an (i + 1)-path belonging to \mathcal{R}_{i+1}

▶ prefix^{*i*}_c (R_{i+1}) $\stackrel{\text{def}}{=} \forall_{U_i} ((\exists_{C_i} A|_{i+1}) \Rightarrow \exists_{C_i} (A|_{i+1} \land R_{i+1}))$ where $A|_i \in Pred(X \cup I_1 \cup \ldots \cup I_i)$ denotes the set of all *i*-paths with *admissible i*th transitions

Symbolic κ -Lookahead: Building Controllers

Definition (Strict Controller K_{κ} for Desirable κ -paths \mathcal{R}_{κ})

 $S\!/_{K_{\kappa}}$ deadlocks unless it can follow a full κ -path belonging to \mathcal{R}_{κ}

$$\blacktriangleright K_{\kappa} = A \wedge \operatorname{prefix}_{c}^{1} \circ \ldots \circ \operatorname{prefix}_{c}^{\kappa-1}(R_{\kappa})$$

Symbolic κ -Lookahead: Building Controllers

Definition (Strict Controller K_{κ} for Desirable κ -paths \mathcal{R}_{κ})

 $S\!/_{K_{\kappa}}$ deadlocks unless it can follow a full κ -path belonging to \mathcal{R}_{κ}

•
$$K_{\kappa} = A \wedge \operatorname{prefix}_{c}^{1} \circ \ldots \circ \operatorname{prefix}_{c}^{\kappa-1}(R_{\kappa})$$

Definition (Best-effort Controller BestEffort (K) from Controller K for S)

 $S_{\text{BestEffort}(K)}$ behaves as S_K whenever it does not deadlock, as S otherwise

• BestEffort
$$(K) = A \land (\exists_C K \Rightarrow K)$$

Symbolic κ -Lookahead: Building Controllers

Definition (Strict Controller K_{κ} for Desirable κ -paths \mathcal{R}_{κ})

 $S\!/_{K_{\kappa}}$ deadlocks unless it can follow a full κ -path belonging to \mathcal{R}_{κ}

•
$$K_{\kappa} = A \wedge \operatorname{prefix}_{c}^{1} \circ \ldots \circ \operatorname{prefix}_{c}^{\kappa-1}(R_{\kappa})$$

Definition (Best-effort Controller BestEffort (K) from Controller K for S)

 $S_{\text{BestEffort}(K)}$ behaves as S_K whenever it does not deadlock, as S otherwise

• BestEffort
$$(K) = A \land (\exists_C K \Rightarrow K)$$

Definition (1-Step Recovering Controller $\operatorname{Recover}(K|\mathcal{R}_{\kappa}))$

 $S_{\text{Recover}(\kappa|\mathcal{R}_{\kappa})}$ behaves as S_{κ} whenever S_{κ} would not deadlock, or reaches a state where it can follow a full κ -path belonging to \mathcal{R}_{κ} whenever reachable in one step

► Recover
$$(K|\mathcal{R}_{\kappa}) = (\nexists_I E \land K) \lor (\exists_U E \land A)$$

with $E = A \land \neg \operatorname{prefix}^0_c(K_{\kappa}) \land \operatorname{prefix}^0_c(K_{\kappa})|_1$

Symbolic κ -Lookahead

Symbolic *k*-Lookahead: Optimization Example

Example (Minimizing
$$E_2 = \sum_{i \in \{1,2\}} x|_i$$
)

$$\blacktriangleright X = \langle x \colon \mathbb{Z} \rangle$$

$$\blacktriangleright U = \emptyset, C = \langle b \colon \mathbb{B} \rangle$$

•
$$T = \langle x := x + 1 \text{ if } x \leq 42 \land b, x \text{ otherwise} \rangle$$

$$\blacktriangleright$$
 A = tt

$$E_{2} = \begin{cases} 2x + 3 & \text{if } x \leq 41 \land b \land b_{2} \\ 2x + 2 & \text{if } x \leq 42 \land b \land \neg b_{2} \lor x = 42 \land b \land b_{2} \\ 2x + 1 & \text{if } x \leq 42 \land \neg b \land b_{2} \\ 2x & \text{otherwise} \end{cases}$$

$$R_{2} = x \ge 43 \lor (\neg b \land \neg b_{2})$$

$$K_{2} = \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$$

$$K_2 = \operatorname{prefix}^1_{\mathrm{c}}(R_2) = (x \leqslant 42 \Rightarrow \neg b)$$

Outline

- Symbolic κ -Lookahead
- Return of the Dynamic Resource Management Use-case

Management Goals as Control Objectives: Safety

Example (Safety Objective)

Restricting the number of started handlers

Strict safety control enforcing $\Phi = (wait + active \leq 42)$ with κ =2:

$$R_{2} = \bigwedge_{i \in \{1,2\}} (wait + active \leq 42)|_{i}$$

= (wait + active + start - end ≤ 42)
(wait + active + start + start_{2} - end - end_{2} \leq 42)
 $K_{\Phi,2} = A \wedge \operatorname{prefix}_{c}^{1}(R_{2})$
= $A \wedge start + wait + active - end \leq 42$

(23/-)

Management Goals as Control Objectives: Optimization

Example (Optimization Objective)

- Minimizing the number of non-started handlers
- Strict minimization of *init* on $S_{K_{\Phi,2}}$ (*i.e.*, with $A = K_{\Phi,2}$) with $\kappa=1$:

$$E_{1} = init|_{1} = init - start + create$$

$$K_{\omega} = K_{\Phi,2} \wedge \begin{pmatrix} (start = init \wedge init + wait + active - end \leq 41) \lor \\ (start + wait + active - end = 42) \end{pmatrix}$$