
Symbolic Limited Lookahead Control for
Best-e�ort Dynamic Computing Resource

Management

Nicolas Berthier Hervé Marchand Éric Ru�en

University of Liverpool INRIA Rennes
Bretagne Atlantique

Université Grenoble Alpes
INRIA, CNRS

WODES 2018 — May 30

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 2/15

Dynamic Resource Management: Use-case

Model-based Management of Request Handlers

Manager of Request Handlers
(Controlled Model)#Arrival, #Yield,

#Termination
#start(),
#resume()

Request Handlers
Requests Event Monitors

Example (Request Handler Behavior)

Init Wait Actstart
resume
yieldcreate end

Symbolic Modeling Principle

Location ; Counter state variable
Event/ command ; Non-controllable/ controllable input variable

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 2/15

Dynamic Resource Management: Use-case

Model-based Management of Request Handlers

Manager of Request Handlers
(Controlled Model)#Arrival, #Yield,

#Termination
#start(),
#resume()

Request Handlers
Requests Event Monitors

Example (Request Handler Behavior)

Init Wait Actstart
resume
yieldcreate end

Symbolic Modeling Principle

Location ; Counter state variable
Event/ command ; Non-controllable/ controllable input variable

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 2/15

Dynamic Resource Management: Use-case

Model-based Management of Request Handlers

Manager of Request Handlers
(Controlled Model)#Arrival, #Yield,

#Termination
#start(),
#resume()

Request Handlers
Requests Event Monitors

Example (Request Handler Behavior)

Init Wait Actstart
resume
yieldcreate end

Symbolic Modeling Principle

Location ; Counter state variable
Event/ command ; Non-controllable/ controllable input variable

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 3/15

Dynamic Resource Management: Linear ASTS Model

Example (Behavior of One Request Handler)

Init Wait Actstart
resume
yieldcreate end

Example (Arithmetic Symbolic Transition System Srh)

X = 〈init,wait, active : Z3〉
U = 〈create, yield, end : Z3〉
C = 〈start, resume : Z2〉

T =

init := init − start + create
wait := wait + start + yield − resume
active := active + resume − yield − end

A = start > 0∧ resume > 0∧ yield > 0∧ create > 0∧ end > 0∧
start 6 init ∧ resume 6 wait ∧ yield + end 6 active

X0 = init = 0∧ wait = 0∧ active = 0

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 4/15

Dynamic Resource Management: Discrete Control

Init Wait Actstart
resume
yieldcreate end

Example (Management Goals as Control Objectives for Srh)

Restricting the number of started handlers ← Safety
I e.g., wait + active 6 42

Minimizing the number of non-started handlers ← Optimization
I i.e., Minimizing init

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 5/15

Symbolic Discrete Controller Synthesis on ASTSs

Principles

I Given S and a Control Objective o
I Compute a Controller K ∈ Pred(X ∪ U ∪ C) (a Predicate involving

variables in X , U, and C) s.t S/K fulfills o

Interpretation / Semantics of S/K

I Start in q ∈ Dom(X) s.t q |= X0

I Repeat 1. Receive Admissible υ ∈ Dom(U)
(s.t ∃γ ∈ Dom(C), (q, υ, γ) |= A)

2. Choose γ ∈ Dom(C) s.t (q, υ, γ) |= K

3. q← T (q, υ, γ)
I Block at step 1. if @(υ, γ) ∈ Dom(U)× Dom(C), (q, υ, γ) |= A
I Deadlock at step 2. if @γ ∈ Dom(C), (q, υ, γ) |= K

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 6/15

Previous Work: Control for Safety1

Dom(X)

Bad States
(Potentially Infinite)

1Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th Int. Workshop on Discrete Event Systems. WODES ’14. Cachan,
France: IFAC, May 2014, pp. 46–53; Nicolas Berthier and Hervé Marchand. “Deadlock-Free
Discrete Controller Synthesis for Infinite State Systems”. In: 54th IEEE Conference on
Decision and Control. CDC ’15. Dec. 2015.

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 6/15

Previous Work: Control for Safety1

Dom(X)

Bad States
(Potentially Infinite)

Uncontrollably Reaching
Bad States: Avoided by K

1Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th Int. Workshop on Discrete Event Systems. WODES ’14. Cachan,
France: IFAC, May 2014, pp. 46–53; Nicolas Berthier and Hervé Marchand. “Deadlock-Free
Discrete Controller Synthesis for Infinite State Systems”. In: 54th IEEE Conference on
Decision and Control. CDC ’15. Dec. 2015.

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 6/15

Previous Work: Control for Safety1

Dom(X)

Bad States
(Potentially Infinite)

Uncontrollably Reaching
Bad States: Avoided by K

1Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th Int. Workshop on Discrete Event Systems. WODES ’14. Cachan,
France: IFAC, May 2014, pp. 46–53; Nicolas Berthier and Hervé Marchand. “Deadlock-Free
Discrete Controller Synthesis for Infinite State Systems”. In: 54th IEEE Conference on
Decision and Control. CDC ’15. Dec. 2015.

Main Limitations

I Over-approximations
I Dom(C) must be finite

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 7/15

Best-e�ort Control

Best-e�ort Control

Compute a Controller K s.t S/K “does its best” to fulfill its objectives

Rationale

I Targeting non-critical application domains
I Handle infinite Dom(C) (in addition to infinite Dom(X) and Dom(U))

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 7/15

Best-e�ort Control

Best-e�ort Control

Compute a Controller K s.t S/K “does its best” to fulfill its objectives

Rationale

I Targeting non-critical application domains
I Handle infinite Dom(C) (in addition to infinite Dom(X) and Dom(U))

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 8/15

Symbolic κ-Lookahead Control: Overview

1. Given κ ∈ N+

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into κ future steps with
κ-lookahead expressions: U2, . . . ,Uκ,C2, . . . ,Cκ

3. Specify desirable pathsRκ of length κ using a κ-lookahead predicate
I belongs to Pred(X ∪ U ∪ U2 ∪ . . .∪ Uκ ∪ C ∪ C2 ∪ . . .∪ Cκ)
I Rκ encodes a potentially infinite set of finite paths

4. Compute controllable prefixes ofRκ iteratively, down toR1
I Alternating universal/existential elimination of the Ui’s and Ci’s
I R1 denotes all transitions that guarantee the existence of valuations for

controllable variables for the next κ− 1 subsequent steps such that the
system follows a path belonging toRκ

5. Build a strict controller K fromR1
I S/K deadlocks whenever one cannot choose values for controllable

variables to follow a complete path inRκ
6. Transform K for best-e�ort and/or recovery

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 8/15

Symbolic κ-Lookahead Control: Overview

1. Given κ ∈ N+

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into κ future steps with
κ-lookahead expressions: U2, . . . ,Uκ,C2, . . . ,Cκ

3. Specify desirable pathsRκ of length κ using a κ-lookahead predicate
I belongs to Pred(X ∪ U ∪ U2 ∪ . . .∪ Uκ ∪ C ∪ C2 ∪ . . .∪ Cκ)
I Rκ encodes a potentially infinite set of finite paths

4. Compute controllable prefixes ofRκ iteratively, down toR1
I Alternating universal/existential elimination of the Ui’s and Ci’s
I R1 denotes all transitions that guarantee the existence of valuations for

controllable variables for the next κ− 1 subsequent steps such that the
system follows a path belonging toRκ

5. Build a strict controller K fromR1
I S/K deadlocks whenever one cannot choose values for controllable

variables to follow a complete path inRκ
6. Transform K for best-e�ort and/or recovery

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 8/15

Symbolic κ-Lookahead Control: Overview

1. Given κ ∈ N+

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into κ future steps with
κ-lookahead expressions: U2, . . . ,Uκ,C2, . . . ,Cκ

3. Specify desirable pathsRκ of length κ using a κ-lookahead predicate
I belongs to Pred(X ∪ U ∪ U2 ∪ . . .∪ Uκ ∪ C ∪ C2 ∪ . . .∪ Cκ)
I Rκ encodes a potentially infinite set of finite paths

4. Compute controllable prefixes ofRκ iteratively, down toR1
I Alternating universal/existential elimination of the Ui’s and Ci’s
I R1 denotes all transitions that guarantee the existence of valuations for

controllable variables for the next κ− 1 subsequent steps such that the
system follows a path belonging toRκ

5. Build a strict controller K fromR1
I S/K deadlocks whenever one cannot choose values for controllable

variables to follow a complete path inRκ

6. Transform K for best-e�ort and/or recovery

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 8/15

Symbolic κ-Lookahead Control: Overview

1. Given κ ∈ N+

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into κ future steps with
κ-lookahead expressions: U2, . . . ,Uκ,C2, . . . ,Cκ

3. Specify desirable pathsRκ of length κ using a κ-lookahead predicate
I belongs to Pred(X ∪ U ∪ U2 ∪ . . .∪ Uκ ∪ C ∪ C2 ∪ . . .∪ Cκ)
I Rκ encodes a potentially infinite set of finite paths

4. Compute controllable prefixes ofRκ iteratively, down toR1
I Alternating universal/existential elimination of the Ui’s and Ci’s
I R1 denotes all transitions that guarantee the existence of valuations for

controllable variables for the next κ− 1 subsequent steps such that the
system follows a path belonging toRκ

5. Build a strict controller K fromR1
I S/K deadlocks whenever one cannot choose values for controllable

variables to follow a complete path inRκ
6. Transform K for best-e�ort and/or recovery

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 9/15

Symbolic κ-Lookahead: Control Objectives

Definition (Desirable Paths Enforcing Φ ∈ Pred(X) for κ Steps Ahead)

Rκ = Φ|1 ∧ . . .∧ Φ|κ

Definition (Desirable Paths Minimizing e ∈ GuardLin(X) over κ Steps)

I C1, . . . ,Cκ are the future non-controllable inputs (with C1 = C)
I C′1, . . . ,C

′
κ encode “alternative” future non-controllable inputs

I Eκ =
∑

i∈{1,...,κ} e|i
I Aκ =

∧
i∈{1,...,κ} A|i

I E ′κ = Eκ[C1 ∪ . . .∪ Cκ/C′1 ∪ . . .∪ C′κ]

Rκ = @C′
1∪...∪C′

κ

(
Aκ⇒

(
A′κ ∧ E ′κ < Eκ

))

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 9/15

Symbolic κ-Lookahead: Control Objectives

Definition (Desirable Paths Enforcing Φ ∈ Pred(X) for κ Steps Ahead)

Rκ = Φ|1 ∧ . . .∧ Φ|κ

Definition (Desirable Paths Minimizing e ∈ GuardLin(X) over κ Steps)

I C1, . . . ,Cκ are the future non-controllable inputs (with C1 = C)
I C′1, . . . ,C

′
κ encode “alternative” future non-controllable inputs

I Eκ =
∑

i∈{1,...,κ} e|i
I Aκ =

∧
i∈{1,...,κ} A|i

I E ′κ = Eκ[C1 ∪ . . .∪ Cκ/C′1 ∪ . . .∪ C′κ]

Rκ = @C′
1∪...∪C′

κ

(
Aκ⇒

(
A′κ ∧ E ′κ < Eκ

))

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 10/15

Symbolic κ-Lookahead: Controllers

Definition (Strict Controller Kκ for Desirable PathsRκ)

S/Kκ deadlocks in a state q ∈ Dom(X) with non-controllable inputs
υ ∈ Dom(U) unless it can follow a full path belonging toRκ

Definition (Best-e�ort Controller BestEffort (K) from Controller K for S)

S/BestEffort(K) behaves as S/K whenever it does not deadlock, as S otherwise

Definition (1-Step Recovering Controller Recover (K |Rκ))

S/Recover(K |Rκ) behaves as S/K whenever S/Kκ would not deadlock, or
transitions in one step to a state where it can follow a full path belonging to
Rκ whenever possible

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 10/15

Symbolic κ-Lookahead: Controllers

Definition (Strict Controller Kκ for Desirable PathsRκ)

S/Kκ deadlocks in a state q ∈ Dom(X) with non-controllable inputs
υ ∈ Dom(U) unless it can follow a full path belonging toRκ

Definition (Best-e�ort Controller BestEffort (K) from Controller K for S)

S/BestEffort(K) behaves as S/K whenever it does not deadlock, as S otherwise

Definition (1-Step Recovering Controller Recover (K |Rκ))

S/Recover(K |Rκ) behaves as S/K whenever S/Kκ would not deadlock, or
transitions in one step to a state where it can follow a full path belonging to
Rκ whenever possible

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 10/15

Symbolic κ-Lookahead: Controllers

Definition (Strict Controller Kκ for Desirable PathsRκ)

S/Kκ deadlocks in a state q ∈ Dom(X) with non-controllable inputs
υ ∈ Dom(U) unless it can follow a full path belonging toRκ

Definition (Best-e�ort Controller BestEffort (K) from Controller K for S)

S/BestEffort(K) behaves as S/K whenever it does not deadlock, as S otherwise

Definition (1-Step Recovering Controller Recover (K |Rκ))

S/Recover(K |Rκ) behaves as S/K whenever S/Kκ would not deadlock, or
transitions in one step to a state where it can follow a full path belonging to
Rκ whenever possible

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 11/15

Management Goals as Control Objectives: Examples

Init Wait Actstart
resume
yieldcreate end

Example (Safety Objective)

I Restricting the number of started handlers
I Strict safety control enforcing Φ = (wait + active 6 42)

; KΦ

Example (Optimization Objective)

I Minimizing the number of non-started handlers
I Strict minimization of init on S/KΦ

(i.e., with A = KΦ)

; Kω

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 12/15

One Execution Trace of Srh/Kω

Init Wait Actstart
resume
yieldcreate end

create 3
0

9 3 2 9 8 9 8 3 8
5 6 6

yield 0 0 0 0 0 4 1 2 1 6 1 0 4
2

end 0 0 0 0 0 1 1
10

1 3 3 1 1 1

start 0
3

0
9 3 2 9 8 9 8 3 8 1 1

resume 0 0 0 0 7
4 10 3 8 9

0 1
4 4

init 3
0 9 3 2 9 8 9 8 3 8

5 10
15

wait

0
3 3

12
8 10 10

17
19

24
28

35 36 35

active
0 0 0 0 7

6 14 5 11 11
7 7

6
7

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 13/15

Experimental Assessment of Practicality (using ReaX)

Benchmarks Derived from the Use-case

Parallel composition: ‖i∈{1,...,N}Srhi ; N kinds of request handlers
I Objective: balance the number of active request handlers of each kind

Alt: Srh with N counters activei, resumei, yield i, and end i

; N pools of active request handlers
I Objective: bound the number of non-started request handlers

Table: Synthesis Times (in Seconds)

N : 2 3 6 9
Parallel, κ=1 0.04 0.06 0.28 1.18
Alt, κ=1 0.03 0.04 0.06 0.12
Alt, κ=2 0.10 0.15 0.49 1.76
Alt, κ=1, 1-step recovery 0.05 0.09 0.31 1.73
Alt, κ=2, 1-step recovery 0.14 0.22 0.90 2.02
Alt, κ=3, 1-step recovery 0.27 0.48 1.99 2.78
Alt, κ=4, 1-step recovery 0.53 1.04 4.30 6.87

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 14/15

Related Works

Limited Lookahead

Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. “Limited lookahead
policies in supervisory control of discrete event systems”. In: IEEE Trans.
Autom. Control 37.12 (1992), pp. 1921–1935
I Language-theoretic framework, N-step ahead projection of behaviors
I Conservative and optimistic a�itudes to accommodate uncertainties

Modeling

Bengt Lennartson et al. “Unified Model for Synthesis and Optimization of
Discrete Event and Hybrid Systems”. In: 12th Int. Workshop on Discrete Event
Systems. WODES ’14. Cachan, France: IFAC, May 2014, pp. 86–92
I Modeling principle similar to ours, though with finite counters (EFAs)
I “Performance” optimization (minimizing the make span of tokens)

DRM Use-case ASTSs κ-Lookahead Control Return of the Use-case Conclusions 15/15

Overall Contributions & Future Works

Symbolic Algorithms for Best-e�ort κ-Lookahead Control

I Non-critical safety & optimization
I Control for recovery
I Drop requirement for finite Dom(C)

I Implementation available in ReaX2

Future Works

I Benchmark with models involving finite variables
I Using MILP or SMT solvers

I Challenges with universal quantifiers

I Identify “good” models for lookahead

2http://reatk.gforge.inria.fr/

http://reatk.gforge.inria.fr/

Symbolic κ-Lookahead Return of the Use-case 16/—

Outline

Symbolic κ-Lookahead

Return of the Dynamic Resource Management Use-case

Symbolic κ-Lookahead Return of the Use-case 17/—

Symbolic κ-Lookahead: Peeking into the Future

Representing κ Future Inputs (κ ∈ N+)

Define new indexed variables U2, . . . ,Uκ and C2, . . . ,Cκ from U and C
I U1 = U, C1 = C, and Ii = Ui] Ci

i-lookahead Expressions (i ∈ {0, . . . , κ})

e|i ∈ Expr(X ∪ I1 ∪ . . .∪ Ii) symbolically denotes the (potential) value of
e ∈ Expr(X) i steps ahead

Example (2-lookahead of e ∈ GuardLin(X) with X = 〈x : Z〉 and I = 〈b : B〉)

With T = 〈x := if x 6 42∧ b then x + 1 else x〉 and e = x :

e|1 =
{

x + 1 if x 6 42∧ b
x otherwise

e|2 =

x + 2 if x 6 41∧ b ∧ b2

x + 1 if x 6 42∧ (¬b ∧ b2 ∨ b ∧¬b2)∨ x = 42∧ b ∧ b2

x otherwise

Symbolic κ-Lookahead Return of the Use-case 17/—

Symbolic κ-Lookahead: Peeking into the Future

Representing κ Future Inputs (κ ∈ N+)

Define new indexed variables U2, . . . ,Uκ and C2, . . . ,Cκ from U and C
I U1 = U, C1 = C, and Ii = Ui] Ci

i-lookahead Expressions (i ∈ {0, . . . , κ})

e|i ∈ Expr(X ∪ I1 ∪ . . .∪ Ii) symbolically denotes the (potential) value of
e ∈ Expr(X) i steps ahead

Example (2-lookahead of e ∈ GuardLin(X) with X = 〈x : Z〉 and I = 〈b : B〉)

With T = 〈x := if x 6 42∧ b then x + 1 else x〉 and e = x :

e|1 =
{

x + 1 if x 6 42∧ b
x otherwise

e|2 =

x + 2 if x 6 41∧ b ∧ b2

x + 1 if x 6 42∧ (¬b ∧ b2 ∨ b ∧¬b2)∨ x = 42∧ b ∧ b2

x otherwise

Symbolic κ-Lookahead Return of the Use-case 17/—

Symbolic κ-Lookahead: Peeking into the Future

Representing κ Future Inputs (κ ∈ N+)

Define new indexed variables U2, . . . ,Uκ and C2, . . . ,Cκ from U and C
I U1 = U, C1 = C, and Ii = Ui] Ci

i-lookahead Expressions (i ∈ {0, . . . , κ})

e|i ∈ Expr(X ∪ I1 ∪ . . .∪ Ii) symbolically denotes the (potential) value of
e ∈ Expr(X) i steps ahead

Example (2-lookahead of e ∈ GuardLin(X) with X = 〈x : Z〉 and I = 〈b : B〉)

With T = 〈x := if x 6 42∧ b then x + 1 else x〉 and e = x :

e|1 =
{

x + 1 if x 6 42∧ b
x otherwise

e|2 =

x + 2 if x 6 41∧ b ∧ b2

x + 1 if x 6 42∧ (¬b ∧ b2 ∨ b ∧¬b2)∨ x = 42∧ b ∧ b2

x otherwise

Symbolic κ-Lookahead Return of the Use-case 18/—

Symbolic κ-Lookahead: Control over Sliding Windows

Sliding Windows as i-pathsRi (i ∈ {0, . . . , κ})

Ri ⊆ Dom(X)× Dom(I)i : Set of paths of i transitions

I Desirable κ-pathsRκ given as Rκ ∈ Pred(X ∪ I1 ∪ . . .∪ Iκ)

Direct Controllable PrefixesRi ofRi+1 (i ∈ {0, . . . , κ})

The direct controllable prefixes of (i + 1)-pathsRi+1 ⊆ Dom(X)×Dom(I)i+1

consist of all i-pathsRi ⊆ Dom(X)× Dom(I)i such that, a�er following an
i-path inRi , a valuation for controllable variables always exists so that S
remains on an (i + 1)-path belonging toRi+1

I prefixi
c (Ri+1)

def
= ∀Ui ((∃Ci A|i+1)⇒ ∃Ci (A|i+1 ∧ Ri+1))

where A|i ∈ Pred(X ∪ I1 ∪ . . .∪ Ii) denotes the set of all i-paths with
admissible ith transitions

Symbolic κ-Lookahead Return of the Use-case 18/—

Symbolic κ-Lookahead: Control over Sliding Windows

Sliding Windows as i-pathsRi (i ∈ {0, . . . , κ})

Ri ⊆ Dom(X)× Dom(I)i : Set of paths of i transitions

I Desirable κ-pathsRκ given as Rκ ∈ Pred(X ∪ I1 ∪ . . .∪ Iκ)

Direct Controllable PrefixesRi ofRi+1 (i ∈ {0, . . . , κ})

The direct controllable prefixes of (i + 1)-pathsRi+1 ⊆ Dom(X)×Dom(I)i+1

consist of all i-pathsRi ⊆ Dom(X)× Dom(I)i such that, a�er following an
i-path inRi , a valuation for controllable variables always exists so that S
remains on an (i + 1)-path belonging toRi+1

I prefixi
c (Ri+1)

def
= ∀Ui ((∃Ci A|i+1)⇒ ∃Ci (A|i+1 ∧ Ri+1))

where A|i ∈ Pred(X ∪ I1 ∪ . . .∪ Ii) denotes the set of all i-paths with
admissible ith transitions

Symbolic κ-Lookahead Return of the Use-case 19/—

Symbolic κ-Lookahead: Building Controllers

Definition (Strict Controller Kκ for Desirable κ-pathsRκ)

S/Kκ deadlocks unless it can follow a full κ-path belonging toRκ

I Kκ = A∧ prefix1
c ◦ . . . ◦ prefixκ−1

c (Rκ)

Definition (Best-e�ort Controller BestEffort (K) from Controller K for S)

S/BestEffort(K) behaves as S/K whenever it does not deadlock, as S otherwise

I BestEffort (K) = A∧ (∃CK ⇒ K)

Definition (1-Step Recovering Controller Recover (K |Rκ))

S/Recover(K |Rκ) behaves as S/K whenever S/Kκ would not deadlock, or reaches
a state where it can follow a full κ-path belonging toRκ whenever
reachable in one step

I Recover (K |Rκ) = (@IE ∧ K)∨ (∃UE ∧ A)
with E = A∧¬prefix0

c (Kκ)∧ prefix0
c (Kκ)|1

Symbolic κ-Lookahead Return of the Use-case 19/—

Symbolic κ-Lookahead: Building Controllers

Definition (Strict Controller Kκ for Desirable κ-pathsRκ)

S/Kκ deadlocks unless it can follow a full κ-path belonging toRκ

I Kκ = A∧ prefix1
c ◦ . . . ◦ prefixκ−1

c (Rκ)

Definition (Best-e�ort Controller BestEffort (K) from Controller K for S)

S/BestEffort(K) behaves as S/K whenever it does not deadlock, as S otherwise

I BestEffort (K) = A∧ (∃CK ⇒ K)

Definition (1-Step Recovering Controller Recover (K |Rκ))

S/Recover(K |Rκ) behaves as S/K whenever S/Kκ would not deadlock, or reaches
a state where it can follow a full κ-path belonging toRκ whenever
reachable in one step

I Recover (K |Rκ) = (@IE ∧ K)∨ (∃UE ∧ A)
with E = A∧¬prefix0

c (Kκ)∧ prefix0
c (Kκ)|1

Symbolic κ-Lookahead Return of the Use-case 19/—

Symbolic κ-Lookahead: Building Controllers

Definition (Strict Controller Kκ for Desirable κ-pathsRκ)

S/Kκ deadlocks unless it can follow a full κ-path belonging toRκ

I Kκ = A∧ prefix1
c ◦ . . . ◦ prefixκ−1

c (Rκ)

Definition (Best-e�ort Controller BestEffort (K) from Controller K for S)

S/BestEffort(K) behaves as S/K whenever it does not deadlock, as S otherwise

I BestEffort (K) = A∧ (∃CK ⇒ K)

Definition (1-Step Recovering Controller Recover (K |Rκ))

S/Recover(K |Rκ) behaves as S/K whenever S/Kκ would not deadlock, or reaches
a state where it can follow a full κ-path belonging toRκ whenever
reachable in one step

I Recover (K |Rκ) = (@IE ∧ K)∨ (∃UE ∧ A)
with E = A∧¬prefix0

c (Kκ)∧ prefix0
c (Kκ)|1

Symbolic κ-Lookahead Return of the Use-case 20/—

Symbolic κ-Lookahead: Optimization Example

Example (Minimizing E2 =
∑

i∈{1,2} x|i)

I X = 〈x : Z〉
I U = ∅, C = 〈b : B〉
I T = 〈x := x + 1 if x 6 42∧ b, x otherwise〉
I A = �

E2 =

2x + 3 if x 6 41∧ b ∧ b2

2x + 2 if x 6 42∧ b ∧¬b2 ∨ x = 42∧ b ∧ b2

2x + 1 if x 6 42∧¬b ∧ b2

2x otherwise

R2 = x > 43∨ (¬b ∧¬b2)

K2 = prefix1
c (R2) = (x 6 42⇒¬b)

Symbolic κ-Lookahead Return of the Use-case 21/—

Outline

Symbolic κ-Lookahead

Return of the Dynamic Resource Management Use-case

Symbolic κ-Lookahead Return of the Use-case 22/—

Management Goals as Control Objectives: Safety

Init Wait Actstart
resume
yieldcreate end

Example (Safety Objective)

I Restricting the number of started handlers
I Strict safety control enforcing Φ = (wait + active 6 42) with κ=2:

R2 =
∧

i∈{1,2} (wait + active 6 42)|i
= (wait + active + start − end 6 42)∧

(wait + active + start + start2 − end − end2 6 42)
KΦ,2 =A∧ prefix1

c (R2)
=A∧ start + wait + active − end 6 42

Symbolic κ-Lookahead Return of the Use-case 23/—

Management Goals as Control Objectives: Optimization

Init Wait Actstart
resume
yieldcreate end

Example (Optimization Objective)

I Minimizing the number of non-started handlers
I Strict minimization of init on S/KΦ,2 (i.e., with A = KΦ,2) with κ=1:

E1 = init|1 = init − start + create

Kω =KΦ,2 ∧
(

(start = init ∧ init + wait + active − end 6 41)∨
(start + wait + active − end = 42)

)

	Titlepage
	Dynamic Resource Management Use-case
	Control of Arithmetic Symbolic Transition Systems
	Symbolic Limited Lookahead Control
	Symbolic -Lookahead Control

	Return of the Dynamic Resource Management Use-case
	Management Goals as Control Objectives: Optimization
	Example Controlled Execution

	Conclusions
	Implementation and Evaluation
	Related Works
	Conclusions

	Appendix
	Symbolic -Lookahead
	Return of the Dynamic Resource Management Use-case
	Management Goals as Control Objectives: Safety
	Management Goals as Control Objectives: Optimization

