Symbolic Limited Lookahead Control for

Best-effort Dynamic Computing Resource
Management

Nicolas Berthier Hervé Marchand Eric Rutten

INRIA Rennes Université Grenoble Alpes

University of Liverpool
Bretagne Atlantique INRIA, CNRS

WODES 2018 — May 30

DRM Use-case

Dynamic Resource Management: Use-case

Model-based Management of Request Handlers

Manager of Request Handlers

#Arrival, #Yield, (Controlled Model) #start (),
#lermination #resume ()

Requests (Event Monitors

Request Handlers

DRM Use-case

Dynamic Resource Management: Use-case

Model-based Management of Request Handlers

Manager of Request Handlers
#Arrival, #Yield, (Controlled Model) #start (),
#resume ()

#Termination

________ Request Handlers

Example (Request Handler Behavior)
resume
Create . start
------ yield

Requests

DRM Use-case

Dynamic Resource Management: Use-case

Model-based Management of Request Handlers

Manager of Request Handlers
#Arrival, #Yield, (Controlled Model) #start (),

#Termination #resume ()

Event Monitors

Requests

Example (Request Handler Behavior)
resume
Create . start
------ yield
Symbolic Modeling Principle

Location ~» Counter state variable
Event/ command ~» Non-controllable/ controllable input variable

Request Handlers

DRM Use-case

Dynamic Resource Management: Linear ASTS Model

resume
creat start (., .}»-":75~ end
------ yield

Example (Arithmetic Symbolic Transition System S;y,)

X = {init, wait, active: 7.>)

U = (create, yield, end : 7.*)

C = (start, resume: 7.%)
init := init — start + create

T= wait := wait + start + yield — resume
active := active + resume — yield — end

A = start > 0 A resume > 0 A yield > 0 A create > 0 A\ end >
start < init A resume < wait A yield 4 end < active
Xo = init = 0 N\ wait = 0 A active = 0

DRM Use-case

Dynamic Resource Management: Discrete Control

Example (Management Goals as Control Objectives for S;y,)

Restricting the number of started handlers <— Safety
> eg., wait 4 active < 42
Minimizing the number of non-started handlers <— Optimization

> i.e, Minimizing init

ASTSs

Symbolic Discrete Controller Synthesis on ASTSs

» Given S and a Control Objective o

» Compute a Controller K € Pred(X U UU C) (a Predicate involving
variables in X, U, and C) s.t S/k fulfills o

Interpretation / Semantics of S/k

» Startin ¢ € Dom(X) s.t q = X
> Repeat 1. Receive Admissible v € Dom(U)
(s.t 3y € Dom(C),(q,v,7) = A)
2. Choose v € Dom(C) s.t (q,v,7) E K

3. 9 T(q,v,7)
» Block at step 1. if (v, y) € Dom(U) x Dom(C),(q,v,7) = A

» Deadlock at step 2. if v € Dom(C), (q,v,v) &= K

ASTSs

Previous Work: Control for Safety’

'Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th Int. Workshop on Discrete Event Systems. WODES "14. Cachan,
France: IFAC, May 2014, pp. 46-53; Nicolas Berthier and Hervé Marchand. “Deadlock-Free
Discrete Controller Synthesis for Infinite State Systems”. In: 54th [EEE Conference on
Decision and Control. CDC ’15. Dec. 2015.

ASTSs

Previous Work: Control for Safety’

Uncontrollably Reaching
Bad States: Avoided by K

'Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th Int. Workshop on Discrete Event Systems. WODES "14. Cachan,
France: IFAC, May 2014, pp. 46-53; Nicolas Berthier and Hervé Marchand. “Deadlock-Free

Discrete Controller Synthesis for Infinite State Systems”. |n: 54th IEEE Conference on
Decision and Control. CDC ’15. Dec. 2015.

ASTSs

Previous Work: Control for Safety’

Main Limitations

{ » Over-approximations
» Dom(C) must be finite

wr

Uncontrollably Reaching
Bad States: Avoided by K

'Nicolas Berthier and Hervé Marchand. “Discrete Controller Synthesis for Infinite State
Systems with ReaX”. In: 12th Int. Workshop on Discrete Event Systems. WODES "14. Cachan,
France: IFAC, May 2014, pp. 46-53; Nicolas Berthier and Hervé Marchand. “Deadlock-Free

Discrete Controller Synthesis for Infinite State Systems”. |n: 54th IEEE Conference on
Decision and Control. CDC ’15. Dec. 2015.

ASTSs

Best-effort Control

Best-effort Control

Compute a Controller K s.t S/ “does its best” to fulfill its objectives

ASTSs

Best-effort Control

Best-effort Control

Compute a Controller K s.t S/ “does its best” to fulfill its objectives

» Targeting non-critical application domains
» Handle infinite Dom(C) (in addition to infinite Dom(X) and Dom(U))

r-Lookahead Control

Symbolic k-Lookahead Control: Overview

1. Given k € N*

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into x future steps with
k-lookahead expressions: Uy, ..., Us, Cy, ..., Cg

r-Lookahead Control

Symbolic k-Lookahead Control: Overview

1. Given kK € NT

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into x future steps with
k-lookahead expressions: Uy, ..., Us, Cy, ..., Cg

3. Specify desirable paths R, of length k using a x-lookahead predicate

> belongsto Pred(XU UU U, U...UU,UCUGU...UC,)
> R, encodes a potentially infinite set of finite paths

r-Lookahead Control

Symbolic k-Lookahead Control: Overview

1. Given kK € NT

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into x future steps with
k-lookahead expressions: Uy, ..., Us, Cy, ..., Cg

3. Specify desirable paths R, of length k using a x-lookahead predicate

> belongsto Pred(XU UU U, U...UU,UCUGU...UC,)
> R, encodes a potentially infinite set of finite paths

4. Compute controllable prefixes of R iteratively, down to R,

> Alternating universal/existential elimination of the U;’s and C;’s

> R, denotes all transitions that guarantee the existence of valuations for
controllable variables for the next x — 1 subsequent steps such that the
system follows a path belonging to R,

5. Build a strict controller K from R4

> S/k deadlocks whenever one cannot choose values for controllable
variables to follow a complete path in R,

r-Lookahead Control

Symbolic k-Lookahead Control: Overview

1. Given kK € NT

2. Introduce additional input variables that represent future inputs (both
controllable and non-controllable) to peek into x future steps with
k-lookahead expressions: Uy, ..., Us, Cy, ..., Cg

3. Specify desirable paths R, of length k using a x-lookahead predicate

> belongsto Pred(XU UU U, U...UU,UCUGU...UC,)
> R, encodes a potentially infinite set of finite paths
4. Compute controllable prefixes of R iteratively, down to R,
> Alternating universal/existential elimination of the U;’s and C;’s
> R, denotes all transitions that guarantee the existence of valuations for
controllable variables for the next x — 1 subsequent steps such that the
system follows a path belonging to R,
5. Build a strict controller K from R4

> S/k deadlocks whenever one cannot choose values for controllable
variables to follow a complete path in R,

6. Transform K for best-effort and/or recovery

r-Lookahead Control

Symbolic k-Lookahead: Control Objectives

Definition (Desirable Paths Enforcing ® € Pred(X) for x Steps Ahead)

R.=®[1 A...AD|,

r-Lookahead Control

Symbolic k-Lookahead: Control Objectives

Definition (Desirable Paths Enforcing ® € Pred(X) for x Steps Ahead)

R.=®[1 A...AD|,

Definition (Desirable Paths Minimizing e € GuardLin(X) over k Steps)

> Ci,...,C, are the future non-controllable inputs (with C; = C)
» Cj,...,C. encode “alternative” future non-controllable inputs
> E. = Zie{n...,f;} eli

> Ax = /\ie{1,...,n} Ali

> E, = EJ[CU...UC;/CiU...UC]
Ry =Bciu..uc, (Ax = (AL ANE, < E))

r-Lookahead Control

Symbolic k-Lookahead: Controllers

Definition (Strict Controller K, for Desirable Paths R)

S/k.. deadlocks in a state ¢ € Dom(X) with non-controllable inputs
v € Dom(U) unless it can follow a full path belonging to R,

r-Lookahead Control

Symbolic k-Lookahead: Controllers

Definition (Strict Controller K, for Desirable Paths R)

S/k.. deadlocks in a state ¢ € Dom(X) with non-controllable inputs
v € Dom(U) unless it can follow a full path belonging to R,

Definition (Best-effort Controller BestEffort (K) from Controller K for S)

S/BestEffort(k) behaves as Sk whenever it does not deadlock, as S otherwise

r-Lookahead Control

Symbolic k-Lookahead: Controllers

Definition (Strict Controller K, for Desirable Paths R)

S/k.. deadlocks in a state ¢ € Dom(X) with non-controllable inputs
v € Dom(U) unless it can follow a full path belonging to R,

Definition (Best-effort Controller BestEffort (K) from Controller K for S)

S/BestEffort(k) behaves as Sk whenever it does not deadlock, as S otherwise

Definition (1-Step Recovering Controller Recover (K|R,;))

S/Recover(k|R,.) behaves as S/ whenever S/, would not deadlock, or
transitions in one step to a state where it can follow a full path belonging to

R.. whenever possible

Return of the Use-case

Management Goals as Control Objectives: Examples

Example (Safety Objective)

> Restricting the number of started handlers

> Strict safety control enforcing ® = (wait + active < 42)

"\/)K¢

Example (Optimization Objective)

» Minimizing the number of non-started handlers

> Strict minimization of init on S/, (i.e., with A = Ko)

~ K,

Return of the Use-case

One Execution Trace of Sy, /k,

create miem o OL3 2019 819 83]zs —
; 2 6 2
vield| o 1 o1 o o ol 7Ly 1 I
end o 0 o o o 1 10"l 3 11
start) o w3 o | 320 80 s 38]
4f10] 3 4 | 4
resume| o | o o o7 8190, 1
. 15
it 3 Tols_ 29 s o sL3fs 20
35 | 36 | 35
28
wait i 2
2 o 1010 19
33
0
14
; 6 5 011 1 J
active o o ol ol = >

Conclusions

Experimental Assessment of Practicality (using ReaX)

Benchmarks Derived from the Use-case

Parallel composition: ||;cy; nySrhi ~> N kinds of request handlers

> Objective: balance the number of active request handlers of each kind

Alt: S, with N counters active;, resume;, yield;, and end;
~> N pools of active request handlers

» Objective: bound the number of non-started request handlers

Table: Synthesis Times (in Seconds)

N: 2 3 6 9
Parallel, k=1 0.04 | 0.06 | 0.28 | 1.18
Alt, k=1 0.03 | 0.04 | 0.06 | 0.12
Alt, k=2 0.10 | 0.15 | 0.49 | 1.76

Alt, k=1, 1-step recovery | 0.05 | 0.09 | 0.31 | 1.73
Alt, k=2, 1-step recovery | 0.14 | 0.22 | 0.90 | 2.02
Alt, k=3, 1-step recovery | 0.27 | 0.48 | 1.99 | 2.78
Alt, k=4, 1-step recovery | 0.53 | 1.04 | 4.30 | 6.87

Conclusions

Related Works

Limited Lookahead

Sheng-Luen Chung, Stephane Lafortune, and Feng Lin. “Limited lookahead
policies in supervisory control of discrete event systems”. In: [EEE Trans.
Autom. Control 37.12 (1992), pp. 1921-1935

> Language-theoretic framework, N-step ahead projection of behaviors

» Conservative and optimistic attitudes to accommodate uncertainties

Modeling

Bengt Lennartson et al. “Unified Model for Synthesis and Optimization of
Discrete Event and Hybrid Systems”. In: 12th Int. Workshop on Discrete Event
Systems. WODES ’14. Cachan, France: IFAC, May 2014, pp. 86-92

» Modeling principle similar to ours, though with finite counters (EFAs)

> “Performance” optimization (minimizing the make span of tokens)

Conclusions

Overall Contributions & Future Works

Symbolic Algorithms for Best-effort x-Lookahead Control

» Non-critical safety & optimization
» Control for recovery
» Drop requirement for finite Dom(C)

» Implementation available in ReaX?

» Benchmark with models involving finite variables
» Using MILP or SMT solvers
> Challenges with universal quantifiers

» Identify “good” models for lookahead

http://reatk.gforge.inria.fr/

http://reatk.gforge.inria.fr/

Symbolic x-Lookahead

Outline

@ Symbolic k-Lookahead

Symbolic x-Lookahead

Symbolic k-Lookahead: Peeking into the Future

Representing x Future Inputs

Define new indexed variables Us, ..., U; and C,, ..., Cx from U and C
> U] = U, C1 = C,and I,': U,'H'JC,'

Symbolic x-Lookahead

Symbolic k-Lookahead: Peeking into the Future

Representing x Future Inputs

Define new indexed variables Us, ..., U; and C,, ..., Cx from U and C
» Ui=U C =C,and [, = U; ¥ C;

i-lookahead Expressions

eli € Expr(X U I U... U [;) symbolically denotes the (potential) value of
e € Expr(X) i steps ahead

Symbolic x-Lookahead

Symbolic k-Lookahead: Peeking into the Future

Representing x Future Inputs

Define new indexed variables Us, ..., U; and C,, ..., Cx from U and C
» Ui=U C =C,and [, = U; ¥ C;

i-lookahead Expressions

eli € Expr(X U I U... U [;) symbolically denotes the (potential) value of
e € Expr(X) i steps ahead

Example (2-lookahead of e € GuardLin(X) with X = (x: Z) and | = (b: B))

With T = (x := if x <42 A bthen x + Telse x) and e = x:
e| _{ x+1 ifx<42Ab
1=

X otherwise
x+2 ifx<41AbADb,
eh={ x+1 ifx<42A(-bAbVbA-b)Vx=42AbAb,

X otherwise

Symbolic k-Lookahead Ci18/—)

Symbolic k-Lookahead: Control over Sliding Windows

Sliding Windows as i-paths R;
R; C Dom(X) x Dom(I)": Set of paths of i transitions

» Desirable k-paths R, given as R, € Pred(XU L U ... U)

Symbolic x-Lookahead 8/ —)

Symbolic k-Lookahead: Control over Sliding Windows

Sliding Windows as i-paths R;
R; C Dom(X) x Dom(I)": Set of paths of i transitions

» Desirable k-paths R, given as R, € Pred(XU L U ... U)

Direct Controllable Prefixes R; of R 1 (iefo,...,k})

The direct controllable prefixes of (i + 1)-paths Riy1 C Dom(X) X Dom(l)™""
consist of all i-paths R; C Dom(X) X Dom(1)" such that, after following an
i-path in R;, a valuation for controllable variables always exists so that S
remains on an (i + 1)-path belonging to R ;41

def

> prefix; (Riv1) = VY, (3cAli+1) = 3 (Alivr A Ria))
where A|; € Pred(X U I; U ... U [;) denotes the set of all i-paths with
admissible ith transitions

Symbolic x-Lookahead

Symbolic k-Lookahead: Building Controllers

Definition (Strict Controller K, for Desirable k-paths R ;)

S/k.. deadlocks unless it can follow a full k-path belonging to R,

> K. = AAprefix} o...oprefix" " (Ry)

Symbolic x-Lookahead

Symbolic k-Lookahead: Building Controllers

Definition (Strict Controller K, for Desirable k-paths R ;)

S/k.. deadlocks unless it can follow a full k-path belonging to R,

> K. = AAprefix} o...oprefix" " (Ry)

Definition (Best-effort Controller BestEffort (K) from Controller K for S)

S/BestEffort(k) behaves as Sk whenever it does not deadlock, as S otherwise

» BestEffort (K) = AA (3cK = K)

Symbolic x-Lookahead

Symbolic k-Lookahead: Building Controllers

Definition (Strict Controller K, for Desirable k-paths R ;)

S/k.. deadlocks unless it can follow a full k-path belonging to R,

> K. = AAprefix} o...oprefix" " (Ry)

Definition (Best-effort Controller BestEffort (K) from Controller K for S)

S/BestEffort(k) behaves as Sk whenever it does not deadlock, as S otherwise

» BestEffort (K) = AA (3cK = K)

Definition (1-Step Recovering Controller Recover (K|R,.))

S/Recover(k|R,.) behaves as S/ whenever S/k, would not deadlock, or reaches
a state where it can follow a full k-path belonging to R, whenever

reachable in one step

» Recover (K|R,) = (F1E A K)V (3UE A A)
with E = A A —prefix? (K,) A prefix? (K|

Symbolic x-Lookahead

Symbolic k-Lookahead: Optimization Example

Example (Minimizing £ = 3 ¢ 53 X[1)

= (x: Z)
> U=g,C=(b:B)
> T = (x:=x+ 1if x <42 A b, x otherwise)
> A=t

2x+3 iftx<41AbADb,

2X+2 ifx<42AbA=bVx=4AbAb,
2x+1 ifx <42AN-bA b

2x otherwise
R2=X>43V(_|b/_|b2)

K, = prefix! (Ry) = (x < 42 = —b)

Return of the Use-case

Outline

@ Return of the Dynamic Resource Management Use-case

Return of the Use-case C22/—)
Management Goals as Control Objectives: Safety

Example (Safety Objective)

> Restricting the number of started handlers

» Strict safety control enforcing ® = (wait + active < 42) with k=2:

Ry = Njeqr oy (wait + active < 42)];
= (wait + active + start — end < 42)A\
(wait + active + start + start, — end — end, < 42)
Ko 2 = A A prefix! (R,)
= A A start + wait + active — end < 42

Return of the Use-case

Management Goals as Control Objectives: Optimization

Example (Optimization Objective)

» Minimizing the number of non-started handlers

» Strict minimization of init on 5/K¢,2 (i.e., with A = Ko 5) with k=1:

Ei = init|; = init — start + create
(start = init A init + wait + active — end < 41) V
Ky =Ko N . .
’ (start + wait + active — end = 42)

	Titlepage
	Dynamic Resource Management Use-case
	Control of Arithmetic Symbolic Transition Systems
	Symbolic Limited Lookahead Control
	Symbolic -Lookahead Control

	Return of the Dynamic Resource Management Use-case
	Management Goals as Control Objectives: Optimization
	Example Controlled Execution

	Conclusions
	Implementation and Evaluation
	Related Works
	Conclusions

	Appendix
	Symbolic -Lookahead
	Return of the Dynamic Resource Management Use-case
	Management Goals as Control Objectives: Safety
	Management Goals as Control Objectives: Optimization

