
Global Platform Management by Using
Synchronous Device Drivers in µ-Kernel-based Systems

Nicolas Berthier
UJF/Verimag ∗

nicolas.berthier@imag.fr

Florence Maraninchi
Grenoble INP/Verimag

florence.maraninchi@imag.fr

Laurent Mounier
UJF/Verimag

laurent.mounier@imag.fr

Abstract
We prospect a solution for the problem of designing µ-kernel-
based embedded systems. This approach relies on a global platform
management mechanism made of synchronous device drivers.

1. Context
One can identify two major classes of operating system kernels
currently in use in embedded systems: monolithic, and µ-kernels.
Yet µ-kernels gain more and more attention in the field of embed-
ded systems, due to numerous design advantages. However, power
management, security or even safety properties, are critical aspects
for the construction of embedded systems. We propose a solu-
tion making the enforcement of global resource management for
µ-kernel-based embedded systems easier.

1.1 Monolithic Kernels and Major Related Problems
In monolithic kernel systems, components such as scheduler, de-
vice drivers and system services (network stack, virtual file sys-
tems) form a single binary blob that runs in kernel space: each of
its parts executes with (almost) all the privileges required to access
and control the full hardware platform. As a result, no protection
barriers enforce isolation between these components. Major prob-
lems that occur are the following:

• A buggy kernel component (e.g., device drivers and system ser-
vices), or even worse, an unanticipated behavior of the com-
position of several cooperating ones, can cause a crash of the
complete system. Such errors can also cause security issues,
since being able to execute cleverly written malicious code in
one single part of this kernel allows to take over the entire ma-
chine.

• Writing this kind of huge programs is also very error-prone: Os-
trand et al. [11] determined that in large-scale software projects,
1, 000 lines of code usually contain from 1 to 16 bugs. Although
these figures are a rough estimate, we can deduce that mono-
lithic kernels, commonly made of millions of lines of code, are
likely to contain many bugs.

Examples of widespread monolithic kernels comprise Linux,
OpenBSD or Windows’ kernel.

1.2 µ-Kernels
µ-Kernel-based systems try to address some of the problems faced
by monolithic kernels by leveraging hardware isolation mecha-
nisms. They usually involve a µ-kernel that manages a small set
of abstractions, and possibly several unprivileged processes (often

∗ Verimag is an academic research laboratory affiliated with: the University
Joseph Fourier Grenoble (UJF), the National Center for Scientific Research
(CNRS) and Grenoble Polytechnic Institute (Grenoble INP).

called servers) that run in user land (i.e., not in kernel space). Ap-
plication processes use services provided by the µ-kernel and the
servers. Classical hardware mechanisms are used so as to enforce
isolation between all these processes; an operating system based on
a monolithic kernel would do it for application processes only.

Intrinsically, µ-kernels provide mechanisms for a well-
structured user land, that constitutes a considerable advantage for
the design of complex systems. A well-suited design of such sys-
tem necessarily makes a clear separation between the roles of each
server, and involves the definition of neat specifications of inter-
process communication protocols. Then, each server can be imple-
mented separately, thus simplifying its design a priori.

1.3 A Short History of µ-Kernels: The Dawn of L4

The first generation of µ-kernels, whose main representative is
Mach [1], revealed to be relatively slow compared to monolithic
counterparts.

Later, Liedtke [9] designed the L4 specification, based on the
idea that the kernel should provide only a minimal set of abstrac-
tions; any unnecessary addition would then reside in user land. He
also developed a highly optimized, though non-portable, imple-
mentation of this specification: performance results turned out to
be comparable with those of its contemporary monolithic kernels.

More recently, Härtig et al. [7] and Heiser [6] further investi-
gated the concept of trusted computing base, and put forward the
usage of L4 as a virtual machine monitor for, e.g., running a par-
avirtualized Linux instance with legacy applications, and other L4
tasks side by side.

Klein et al. [8] developed seL4, a formally verified implemen-
tation of L4, including extensions such as a capability model for
resource access control. Ruocco [12] studied the potential usage of
L4 in the context of real-time applications. He concluded that L4
presents numerous advantages when designing real-time applica-
tions, along with appropriate device drivers that run in user land.

2. Problems
2.1 Device Drivers Integration
Studying Linux and OpenBSD, Chou et al. [5] stated that device
drivers significantly contribute to the number of bugs in operating
system kernels. Thus, one problem that still arises when using L4
as an operating system basis, is the integration of device drivers in
the whole system.

In their experiments about the trusted computing base, Härtig
et al. [7] proposed to leverage already written device drivers from
the paravirtualized Linux so as to drive actual peripheral devices,
at the expense of losing the possibility of sharing such device
among several L4 tasks or instances of Linux. Another solution they
propose for reusing Linux device drivers is to integrate them into



a glue, called Device Driver Environment, that produces a driver
running in user land and using L4 services to access the hardware.

The previous approach is similar to the one of Apple. Their
XNU kernel is built on top of a first-generation µ-kernel (from
the Mach family). However, it involves additional pieces of code
running in kernel space: one provides UNIX abstractions to user-
level processes; another is the I/O Kit framework, that includes
device drivers. The latter supports dynamic loading and unloading
of drivers into the kernel, along with possible interactions with user
land device drivers. At the end of the day however, such a kernel
looks more like a monolithic one.

2.2 Global Knowledge Problem
Another problem that arises (but is not specific to) µ-kernel-based
systems, is the lack of global knowledge about the state of the
whole system.

The “suspend blockers” case: The controversial suspend block-
ers (aka wakelocks)1 case is a typical example of the need for
global knowledge, that occurs in the context of Linux-based em-
bedded systems. One of its parts that is related to device drivers
could be formulated as follows. When the kernel notices there is
no computation to be performed, it can decide to put CPUs asleep.
Current practice is to only put the CPUs into so called idle mode.
However, Android developers have proposed to “opportunistically”
use deeper sleep modes that globally affect the platform as a whole
(e.g., ACPI full system suspend, that also shuts down some periph-
eral devices) in order to save more power when there is neither
computation to be performed, nor device in use. Yet, this feature
supposes that the kernel can decide if there is no currently working
device that should not be suspended. Suspend blockers are struc-
tures proposed to circumvent this kind of problems. They should
be used by device drivers to provide this information to the Linux
kernel.

The key idea behind this case is that one needs some global
knowledge about the state of each peripheral device so as to decide
whether one can suspend the whole platform. This knowledge is
actually distributed among the device drivers, since each one is in
principle the only manager of a part of the platform.

3. Approach Proposal
We have already published some ideas concerning synchronous
programming of device drivers in the context of wireless sensor net-
work nodes [3]. We advanced the usage of a Control Layer (CL),
comprising synchronous device drivers automata, whose parallel
composition constitutes a knowledge about the state of the whole
system. Those automata can be programed using a synchronous
language [2], then compiled into sequential code. Further investi-
gating the extensions of our approach led us think about its usage
in the context of µ-kernel-based operating systems.

We propose to integrate all device drivers in a single user land
server, following a similar interaction method that was used for the
CL (that could become a Platform Control Server — PCS). This
server could react to requests from other tasks and the hardware,
and then maintain a global knowledge of the full system. Consider-
ing the “suspend blockers” case, it could then be relatively easy to
decide whether it is possible to suspend the full system (thanks to
the synchronous view of the underlying global state).

Advantages: This approach shares common points with the I/O
Kit framework used by Apple, and the Device Driver Environment

1 Please refer to the “Suspend block” article by Jonathan Corbet (http://
lwn.net/Articles/385103/), and the linux-pm mailing list for further
information about this topic.

proposed by Härtig et al. [7], in the sense that it takes the best of
both worlds: it combines the advantages of user land device drivers
with the global knowledge that can be gathered by grouping them.

In addition, global control could be integrated and handled prop-
erly, as we did for WSN applications: in [3], we proposed to intro-
duce a controller enforcing global properties, such as forbidding
several peripheral devices to consume a high amount of power
at the same time. In the context of embedded systems we con-
sider presently, one could also design booking controllers (i.e., that
queue requests for deferred processing) since memory and compu-
tation time are less constrained resources than in WSN nodes.

Challenges: One challenging aspect resides in the potential dy-
namism: how could we manage device hotplug? We claim that pre-
serving the synchronous aspect of the PCS is a key point, since this
helps keeping a coherent knowledge of the global state. Investigat-
ing reactive programming [4] of device drivers could help on this
point. A related problem concerns the reuse of device drivers al-
ready written for other systems. This could reveal feasible by using
an encapsulation of such code into some glue, and extracting the
corresponding device driver automaton. Also, synthesis of drivers
from appropriate specifications is conceivable, as Ryzhyk et al. [13]
did for monolithic kernels.

Eventually, this new approach for synchronous device drivers
integration and design in µ-kernel-based embedded systems
presents several advantages, by keeping track of the state of the
full platform. We believe that such a proposition could lead to in-
teresting perspectives in the design of embedded systems.

References
[1] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub, R. F. Rashid,

A. Tevanian, and M. Young. Mach: A New Kernel Foundation for
UNIX Development. In USENIX Summer, pages 93–113, 1986.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone. The synchronous languages 12 years later. Pro-
ceedings of the IEEE, 91(1):64–83, 2003.

[3] N. Berthier, F. Maraninchi, and L. Mounier. Synchronous Program-
ming of Device Drivers for Global Resource Control in Embedded
Operating Systems. In Conference on Languages, Compilers, Tools
and Theory for Embedded Systems (LCTES), Chicago, IL, USA, 2011.

[4] F. Boussinot and R. de Simone. The SL Synchronous Language. IEEE
Trans. Software Eng., 22(4):256–266, 1996.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An Empirical
Study of Operating System Errors. In SOSP, pages 73–88, 2001.

[6] G. Heiser. The Role of Virtualization in Embedded Systems. In Pro-
ceedings of the 1st workshop on Isolation and integration in embedded
systems, IIES ’08, pages 11–16, New York, NY, USA, 2008. ACM.

[7] H. Härtig, M. Roitzsch, A. Lackorzynski, B. Döbel, and A. Böttcher.
L4- Virtualization and Beyond. Korean Information Science Society
Review, 2008.

[8] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: formal verification of an OS kernel.
In Matthews and Anderson [10], pages 207–220.

[9] J. Liedtke. On µ-Kernel Construction. In SOSP, pages 237–250, 1995.
[10] J. N. Matthews and T. E. Anderson, editors. Proceedings of the 22nd

ACM Symposium on Operating Systems Principles 2009, SOSP 2009,
Big Sky, Montana, USA, October 11-14, 2009. ACM, 2009.

[11] T. J. Ostrand and E. J. Weyuker. The distirubtion of faults in a large
industrial software system. In ISSTA, pages 55–64, 2002.

[12] S. Ruocco. A Real-Time Programmer’s Tour of General-Purpose L4
Microkernels. EURASIP J. Emb. Sys., 2008, 2008.

[13] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser. Automatic
device driver synthesis with termite. In Matthews and Anderson [10],
pages 73–86.

http://lwn.net/Articles/385103/
http://lwn.net/Articles/385103/

	Context
	Monolithic Kernels and Major Related Problems
	µ-Kernels
	A Short History of µ-Kernels: The Dawn of L4

	Problems
	Device Drivers Integration
	Global Knowledge Problem

	Approach Proposal

