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Abstract

In embedded systems, controlling a shared resource like the bus,
or improving a property like power consumption, may be hard
to achieve when programming device drivers individually. There
is a need for global resource control, taking decisions based on
a centralized view of the devices’ states. In this paper, we study
power consumption in sensor networks, where the nodes are small
embedded systems powered by batteries. We concentrate on the
hardware/software architecture of a node, where significant gains
can be achieved by controlling the consumption modes of the
various devices globally. The architecture we propose involves a
simple adaptation of the application level, to communicate with
the hardware via a control layer. The control layer itself is built
from a set of simple automata: the drivers of the devices, whose
states correspond to power consumption modes, and a controller
that enforces global properties. All these automata are programmed
using a synchronous language, whose compiler performs static
scheduling and produces a single piece of C code. We explain
the approach in details, demonstrate its use with either Contiki or
a traditional multithreading operating system, and report on our
experiments.
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1. Introduction
1.1 Resource Control in Embedded Systems

In embedded systems, controlling a shared resource, or improving
a global property, may be crucial in some application domains. As
an example, consider power consumption in the node of a wireless
sensor network (WSN). A node is a small embedded system pow-
ered by a battery that cannot be recharged. Optimizing power con-
sumption has a direct effect on the lifetime of the system. This is a
typical cross-layer problem, because all the elements of a network
have some impact: the hardware devices, the protocols, and the ap-
plication. To start with, the choice of the hardware devices, like
the radio component or the micro-controller (MCU), is very im-
portant. Choosing devices that can be put in some low consuming
mode when nothing happens may offer significant gains in sensor
networks, where traffic is quite low.

Once the hardware devices have been selected, programming an
embedded node in such a way that the low-consumption modes of
the various devices be well exploited is not easy. The software has a
huge impact on the consumption states of the various devices (e.g.,
the driver of the radio puts it in the low consumption mode), but this
low-level software is usually designed in a local, per device, way.
Information on the consumption states of the various devices is then
scattered among several pieces of code (device drivers, protocols,
application, or operating system), and the decisions are necessarily
taken in a local, decentralized manner.

1.2 Need for Global Control

Let us look at an example that illustrates common problems with
decentralized approaches for controlling the power modes of the
hardware devices.

Consider a simple sensor network application involving two
concurrent tasks. The first one periodically senses the environment
using a passive sensor connected to an analog-to-digital converter
(ADC), and sometimes stores this information by using a flash
memory module. When the collected data satisfy a given property,
an alarm is sent to a special node of the network (the sink). The
second task manages the network by listening to a channel, with
the help of a radio transceiver device. This part of the software is
responsible for routing the packets received to the desired nodes,
and sending new alarms upon request from the first task.

Numerous existing sensor network hardware platforms (“mote”)
provide several devices connected to the micro-controller unit
(MCU) using a limited number of buses. Therefore, the two almost
independent tasks are in practice constrained by shared resources
like buses. Concurrency problems must then be avoided by enforc-
ing global properties such as mutual exclusion of the accesses to
shared resources.

Another example deals with the reduction of instantaneous
power consumption in such systems. For instance, one would like



to ensure that the radio and the flash memory devices are not simul-
taneously in an energy-greedy operating mode. If the control of the
radio (resp. the memory) is implemented in the driver of the radio
(resp. the memory), the decisions on the total power consumption
cannot be done, because there is no place in the software where the
global information is available.

With global control, the idea is that all information on the power
modes of the devices should be gathered and exploited by a power-
consumption policy implemented as a centralized controller.

1.3 Problem Formulation and Proposal

The problem we consider in this paper is the following: given a
hardware architecture made of several devices whose consumption
states are known, plus some existing application software (e.g., the
protocol stack in the case of sensor networks nodes), how to replace
the low-level software (typically the set of drivers) by a control
layer that implements a global power consumption policy? This
should be done in such a way that only very small changes are
required in the existing application software.

In our proposal, the application software can be implemented
as a set of threads on top of a scheduler, or with event-driven
programming as in Contiki [10].

To build the control layer we use synchronous programming,
which has been studied a lot in the embedded system community,
especially for hard real-time safety-critical systems, like nuclear
plant controllers or automatic flight control. The family of syn-
chronous languages [4] offers complete solutions, from pure static
scheduling to some operating system support. The control layer is
designed as a parallel program in a synchronous language, and then
statically scheduled by the compiler to produce sequential C code.

The design of the control layer is inspired by controller synthe-
sis techniques [21], although we do no use a controller synthesis
tool, for efficiency reasons. The approach is similar to several pro-
posals that have been made in the family of synchronous languages
and tools (see, for instance, [7]], [16] or [3]]).

To summarize, the approach is as follows: (i) each device driver
is described as a simple Mealy automaton M;, whose transitions
are labeled by Boolean formulas made of inputs from both the
hardware and the software, and by outputs representing low-level C
code; (ii) we specify some global properties, like: “P: the devices
A and B should not be in their highest consuming modes at the
same time”; (iii) the automata of the drivers are made controllable,
meaning that the absence of an additional input may prevent the
automaton from changing states; this yields the family of automata
M/’s. (iv) we build an automaton C, to control the M}’s in such
a way that global properties like P are ensured (this is typically
where a controller synthesis tool would be used); (v) C' and the
M’s are programmed in some synchronous language; (vi) the
control layer is obtained by compiling the parallel composition of
C and the M/’s into a single piece of sequential C code.

This approach has some consequences on programming models.
Indeed, the control layer may refuse to execute a command that
changes the state of a device, when this would result in a global
state forbidden by some property like P. In the implementation of
the control layer, one may choose to cancel the request, or to delay
it until it becomes acceptable. In either cases, the consequences on
programming models are similar to what has to be done for error
handling.

The whole approach allows to reuse a wide range of previously
written software and operating systems, by replacing some of their
device drivers code with requests to the control layer. Porting an
operating system originally designed for sensor networks to our
new hardware/software architecture requires the replacement of
the software that drives the physical devices such as the radio
transceiver and the flash memory modules, or that manages a bus.

Higher level parts like the network stack and the file systems remain
in the original operating system.

1.4 Contributions and Structure of the Paper

This paper makes three contributions to global resource control in
embedded systems: (i) a software architecture based on a control
layer, between the hardware and the high level software; (ii) a
method for obtaining the control layer automatically from a formal
description of the device drivers, plus a description of the global
properties that should be ensured; (iii) a working implementation
of these two ideas, which can be used with either Contiki or a plain
multithreading operating system seating on top of the control layer.

The remainder of the paper is structured as follows: in Section[2]
we briefly present the technical background for the definition of
the control layer; Section [3| gives the hardware platform example;
Sections [4] and [5] describe the principles of our approach, and then
suggest extensions; Section[6]describes the actual implementation;
Section[7]provides an evaluation of the whole approach; Sections|g]
and Bl review related work and conclude.

2. Background on Synchronous Languages

The essential points of synchronous languages semantics [4]] can be
explained with synchronous products of Boolean Mealy machines
(BMMs), as described in [20]. In such machines inputs and outputs
are distinguished, and the communication is based on the asymmet-
ric synchronous broadcast mechanism.

Figure[T)is an example. Machine Sa (resp. Sb) reads a (resp. b),
and emits a b (resp. c¢) every two a’s (resp. b’s). SE is the result
of their composition. It is a machine that reads a and emits a ¢
every four a’s. Notice that emitting b in Sa, and reacting to b in
Sb, are combined into a single transition, making communication
instantaneous.

In all synchronous languages, a program is made of several
components that can be viewed as separate BMMs. Several con-
structs allow to combine them, in parallel or hierarchically. The
various machines communicate via the synchronous broadcast, by
sending and receiving signals. From a parallel program, the compil-
ers produce a piece of code called the reactive kernel. This kernel
has to be wrapped in some loop code, which calls the kernel re-
peatedly, to make it execute one transition at a time. The C code
of the reactive kernel is sequential: the parallelism present in the
original program has been compiled, i.e., statically scheduled. Note
also that the size of the resulting code is linear in the size of the
original BMMs, not in the size of their product.

For the example given above, we can encode the two automata
into Lustre/SCADE [12]], and then use a compiler from Lustre to
C code. The code produced looks like the one on Listing [1} The
first part is the “reactive kernel” produced by the compiler: a step
function, and an init function, plus the declaration of the state
variables. The second part shows how to use such a kernel, by
providing an output function, and calling the kernel in an infinite
loop that provides it with inputs. The execution of this code outputs
“1” every 4 occurrences of value 1 for the input a.

Figure 1. Two Boolean Mealy machines Sa, Sb synchronized via
a signal b, and the result of their composition SE.
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Figure 3. Global description of the approach.

// the reactive kernel produced by the compiler:
int M6, M13, M4; // state variables
void init () { M4 = 1; } // initialization
void run_step (int a)

int L1, L2, L3, L8, L10, L12, L15;

L3 = M4 | M6; L2 = "L3; L12 = M4 | M13;

L10 = "L12 & a; L1 = L2 & L10; main_-O_c(L1);

L8 = L3 & “L10; L15 = L12 & 7a;

M6 = L8 | L1; M13 = L15 | L10; M4 = 0; }

// to be added to get a main program:
// output procedure:

void main_.O_c (int x) { printf ("%d\n", x); }

int main () {
int a; init (); // initialization
while (1) { // infinite loop
printf (" Give_a_(0/1):."); // get inputs

scanf ("%d”, &a);
// compute next state and produce outputs
run_step (a); } }
Listing 1. Reactive kernel obtained by compiling the example of
Figurem and an example main program using this kernel.

3. Example Platform

Figure[Z]is a block diagram describing the Wsn430 hardware mote
for wireless sensor networks. It is composed of an MSP430 micro-
controller including several on-board peripherals (timers, ADCs,
USARTs — universal synchronous/asynchronous receiver/trans-
mitter, etc.), a CC1100 radio transceiver, a flash memory module
and various sensors. A network simulator, along with a cycle accu-
rate emulator can be used in order to test and debug applications
and full systems from their target binary code [14]. Concerning
shared resources, one can note that the flash memory module and
the external RS232 serial link share the same USART module of
the MCU. Therefore, we need to avoid simultaneous accesses to
these resources.

MCU Flash| [RAM spr| CC1100
Radio
16 bits Modul
cPU T16 bits! I T gfbits | ocuie
Mspaz0 | v ¢ " & 4 b
peripherals
4 | 1 wire SPI
External Serial Serial Id 1MB Flash Memory
Interface

Figure 2. The Wsn430 mote (taken from [14]).
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4. Principles of the Solution

The solution we propose can be explained by looking at the imple-
mentation we obtain for the example given in Section [3] For sake
of simplicity, some tricky points are not explained on this example
(more details are provided in Section |§])

In the sequel, we call fasks (or sometimes guest tasks) the exe-
cution flows executing concurrently in the guest operating system
(OS) and application layer, whatever the concurrency model of this
system is. For instance, a task can be a classical thread or a pro-
tothread [[11] (as the basis in the Contiki OS).

4.1 Main Structure

Figure[3]describes the main structure. From bottom to top, it shows:
the hardware, the Control Layer (CL), and the guest code (the guest
operating system, plus the application code). In order to commu-
nicate with the hardware, the guest uses dedicated function calls
instead of direct low-level register operations. The element called
adaptation layer on Figure @represents this modification. Modulo
this slight modification of the hardware accesses, any existing OS
can be ported on top of the CL.

The CL is the key element. It implements the global control
objectives for resource and power management by intercepting
hardware requests (i.e., interrupt requests) and software requests
(from the guest, via the adaptation layer). It maintains an up-to-
date view of the current states of all the hardware resources.

The CL presents a simplified view of the real hardware to the
guest, by exporting a set of functions that may be called by the
guest through the adaptation layer. These functions play the same
role as the hypercalls of the paravirtualization approaches [24].

4.2 The Adaptation Layer

The adaptation layer is the part of the guest operating system that
needs to be modified in order to be executed with the CL. It mainly
comprises a set of simple functions issuing software requests to the
underlying layer by using so-called hypercalls. It can also register
callbacks to be executed upon emission of a given event by the CL.

turn_adc_on ()

if (on_sw (adcon) = ackg)
timer_wait (some time);
turn_adc_on ();

Listing 2. Function of an ADC driver.

return success;
// Consider we can
// try again later

Listing [2]illustrates a function for an ADC driver. adc_on is an
input of the control layer that can be refused. on_sw() is a function
(hypercall) provided by the CL (see below), returning the event
ack,, if the request adc_on has indeed been taken into account.

The adaptation layer also exposes a run_guest() function whose
behavior is to schedule and execute all runnable guest tasks, if any.
This function returns when all tasks are blocked and all needed
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Figure 4. Details of the Control Layer.

computations have been performed by the guest, meaning that the
CL can put the CPU in low power mode.

4.3 Overview of the Control Layer
4.3.1 Structure

As depicted in Figure[d] the CL is made of two parts: the reactive
part, and the event management part.

The reactive part (also referred to as tick in the sequel) comes
from all the automata of the drivers to be controlled, plus a con-
troller. These drivers consist in BMMs as depicted in Section[2] that
produce outputs triggering the execution of resource operational
code (essentially low-level code accessing registers of the devices).
They also produce output events that provide information about the
state of the resources to the adaptation layer. Inputs of these BMMs
are twofold: requests emitted by the adaptation layer that trigger
operations on the devices, plus approval signals that allow the con-
troller to restrict this behavior (details on approval signals and the
controller are given in Section [4.3).

The tick is the reactive kernel obtained from the compilation
of the controller and the resource automata, when composed in
parallel (as mentioned in Section |Z|) The tick is entirely passive:
it has to be called from the other part of the CL (see below); when
called (using the tick.run_step() function), it executes exactly one
transition of the compiled automata, then executes some low-level
code, and produces output events.

The event management part is in charge of managing queues
for hardware and software requests, and building input events in
order to call the tick. It also interprets the output events produced
by the reactive part in order to send information to the upper layers.
The event management part is made of the two queues, plus several
pieces of code. The hardware event queue is filled by the hardware
only; the software event queue is filled by the guest layer only. We
first describe each piece of software. The complete behavior that
results from their organization is best understood by looking at the
two possible execution paths of Figure El The pieces of software
are as follows:

e on_it() is the interrupt handler: its execution is launched by the
occurrence of some interrupt (which has also posted an element
in the hardware queue); it calls react();

e on_sw() is executed by the adaptation layer so as to emit a
software event to be pushed in the software queue; it also calls
react();

e react() consumes the elements in the two queues, in order to
build an input event to be given to tick. It is a loop, calling

- ’ e
< hardware events \\ hardware events

(a) (b)

Figure 5. Execution Paths in the Control Layer, either triggered by
the emission of a software request (a) or a hardware event (b).

tick.run_step() until the two queues are empty; when a soft-
ware request s is taken from the queue, and used as part of an
event to run one tick, react() is able to interpret the ousputs of
the tick execution, and to transmit information to the adaptation
layer that had called on_sw(s).

4.3.2 Example Execution Paths

Figure [5] describes the execution paths corresponding to software
and hardware requests alone. Figure [I0] and Section [4.€] illustrate
a more general execution, where hardware and software requests
may happen concurrently.

Let us look at Figure [5}(a) first, and suppose that no hardware
interrupt occurs. The guest code needs to perform an operation on
the hardware (e.g., turn the ADC on); to do so, it calls a func-
tion turnADCon() of the adaptation layer. This function posts a
software request adc_on, by calling the on_sw() function. Then,
on_sw() immediately calls react(), that picks an element in the
software queue (the request just posted), and calls tick.run_step()
with an event of the form: adc_on .X .y... where x,y, ... are the
other software and hardware events. The execution of the tick with
such an event executes the appropriate transition from its current
state, may execute some low-level code, and returns by providing
the output events of the transition. react() analyzes this output, and
may call some callback function of the adaptation layer, to report
about what happened when the software event was treated. In this
execution path, the flow of control is not stopped during the treat-
ment of one software request; as a result, the loop in react() iterates
exactly once for each request.

Let us look at Figure @(b). A hardware interrupt occurs, i.e.,
the hardware puts an event irq, in the hardware queue, and then
“calls” on_it(). This may happen at any time, in particular while
the processor is busy executing the software, including one call of
react(). If a call to react() is executing currently, on_it() leaves
the interrupt in the hardware queue, but does nothing to treat it
(see below). If no call to react() is executing currently, then the
software is interrupted, and on_it() calls react(). That consumes
the hardware event just posted in the hardware queue, and calls
tick.run_step() with an event of the form: irg, .X .y... where
x,vy, . . . are the software events, and the other hardware events. The
execution of the tick with such an event executes the appropriate
transition from its current state, may execute some low-level code,
and returns by providing the output events of the transition. react()
analyzes this output, and may call some functions of the adaptation
layer. For instance, in case of an interrupt from the timer, the
adaptation layer may have to wake up some task in the guest code.
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main ()
tick.init (); // Initialize the reactive part
while (true)

// Run guest until it
// by returning from
run_guest ();

// Enter LPM: this function will return upon
// the next hardware event occurrence (cf.
// function ‘on_it()’ of Listing ).
enter_lpm ();

requests entering LPM
this function:

Listing 3. The main() Function.

on_it ()
// Notice the event has already been pushed in
// hw_queue, and interrupts are disabled
if (! already_in_reaction)
react (); // Trigger reaction
wake_up (); // Then wake up the CPU if it
// was in LPM hitherto

Listing 4. The on_it() Function.

4.4 Details on the Event-Management Part

Let us describe the left part of Figure ] The goal of this part is
to efficiently interleave executions of the reactive part along with
the guest operating system. It also manages all input requests,
translating them into input events to be given to the reactive part,
and conveys output information to the adaptation layer.
The events triggering executions of the reactive part are:
® hardware events (or interrupts), notifying a device operating
mode transition. For instance, these information can be low-
level timer counter expiration, general purpose digital input
state update, etc.
e software requests, notifying requests from the guest operating
system.

4.4.1 Running the Guest Operating System

As usual, the main() function presented in Listing [3|is the entry
point of the whole system and application code. After having ini-
tialized the tick code and the guest software using tick.init(), it
enters in an endless loop. It then continuously activates the execu-
tion of the guest task(s) through the provided run_guest() function
(typically, a call to the guest task manager, meaning that it runs
until all tasks are blocked). If the latter function returns, then no
more task is runnable; i.e., the guest would have put the CPU in
low power mode (LPM) if it were executing on bare hardware. The
main() function can then put the CPU into LPM. It benefits from
the full knowledge of the reactive part about the states of the hard-
ware devices in order to compute the best admissible LPM (i.e., in
order to ensure its wakening by a hardware event). The guest tasks
are permanently rescheduled and executed through the run_guest()
function upon the occurrence of a hardware event.

4.4.2 Handling Input Requests

The on_it() function depicted in Listing 4] is called by low-level
interrupt handlers, with interrupts being disabled, upon insertion of
anew hardware event into the associated queue. It calls the react()
function if it was not already running when the interrupt occurred
(with the help of the already_in_reaction flag). It eventually wakes
up the CPU when needed.

The role of the on_sw() function (cf. Listing[5)) is to queue new
software requests and trigger reactions upon their emission by the
adaptation layer. It returns the corresponding output of the reactive
part.

The react() function in Listing [6] behaves as follows: when
called, it sets the already_in_reaction flag so that upcoming hard-

28 // Eventually ,
29 // all emitted outputs (if any):
30 launch_callbacks (all_outputs);
31 // Notify we leave
32 already_in_reaction =

1 on.sw (input_signal)
2 // Create a new request from the input:
3 sw_req.create (input_signal);
4 // Disable interrupts to protect requests
5 // management:
6 disable_interrupts ();
7
8 // Push the event in the software requests:
9 sw_queue . push (sw_req);
10 react (); // Trigger reaction
11 enable_interrupts (); // Re—enable interrupts
13 // Return the result that has been recorded by
14 // the ‘react()’ function
15 return sw_req.get_result ();
Listing 5. The on_sw() Function.
1 react ()
2 // Announce we start the reaction:
3 already_in_reaction = true;
4 all_outputs.empty ();
5
6 do {
7 // Build an input event by extracting the
8 // software request (if any) and hardware
9 // events from the two queues:
10 <input_event, sw_req> =
11 build_input_event (hw_queue, sw_queue);
13 // Notice enabling interrupts allows new
14 // hardware events to be pushed into hw_queue
15 enable_interrupts ();
16 outputs = tick.run_step (input_event);
17 disable_interrupts ();
19 all_outputs.merge (outputs);
20 // If there was a software request, then
21 // setup its result:
22 if (sw_req) sw_req.set_result (outputs);
24} while (! hw_queue.is_empty () ||
25 | sw_queue.is_empty ());
26 // Here, both queue are empty.

launch callbacks associated with

the reaction:
false ;

Listing 6. The react() Function.

ware events do not trigger reactions themselves (cf. on_it() function
in Listing[). This flag is reset at the very end of the reaction.

The loop from lines [6]to 23] extracts and treats all requests from
both the software and hardware event queues until they become
empty. Each turn, all requests are popped from the queues and an
input event is built and given to the reactive part (on line[16).

The output of this execution step of the tick is set as result of
the software request, if any, that triggered it (line[22)).

Again, this result is merged with all outputs gathered during the
preceding executions of the loop (in set all_outputs, initialized to
the empty set at the beginning of the function). This set will serve
on line [30] to launch all previously registered callbacks associated
with the outputs that have been emitted during the reaction.

4.5 Details of the Reactive Part

Let us now look at the details of the reactive part of Figure[d] This
component gathers all the (possibly controllable) Mealy machines
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Figure 6. Original (a) and Controllable (b) Device Driver Au-
tomata for a Timer.

modeling the hardware devices along with the associated controller.
All these components are compiled together into a piece of se-
quential code according to the synchronous parallel composition
paradigm (cf. Section 2).

The inputs of the automata are Boolean formula built from
the hardware interrupts (e.g., a timer interrupt) and the software
requests (e.g., turn the ADC on). The outputs are acknowledgments
(e.g., the request for turning the ADC on has actually been taken
into account) and several signals that abstract the events occurring
at the hardware level (e.g., the timer has expired).

4.5.1 Device Driver Machines

Designing the control path of a usual driver as an explicit automa-
ton is quite natural. The states of this automaton reflect the operat-
ing modes of the device. The transitions are triggered by inputs that
may be of two kinds: requests for changing modes, and hardware
events. The idea is to guarantee that the state of the automaton al-
ways reflects the state of the device. The outputs on the transitions
may represent low-level code (accesses to the device registers) that
has to be executed to perform the real device operation.

In the sequel, we use the following syntax for a transition label:
“i1 .i2 / 01, 02, f()” where i1 . i> is an example Boolean formula
built from the set of software and hardware inputs, 01 and o2 are
example outputs, and f() is the call to some low-level code. For the
sake of simplicity, self-loops with no outputs are not represented on
the figures.

An important point here is the notion of controllability. Indeed,
if we want to meet global control objectives, the requests from the
software (and potentially some of the hardware events) should not
always be accepted by the device driver. In the vocabulary of con-
troller synthesis, it means that the automata to be controlled should
have controllable inputs; if they do not have enough controllable
transitions, then the global control objective may be unfeasible.
In the sequel, we describe controllable automata for the devices.
For one of them (the timer), we explain how to transform a non-
controllable device driver into a controllable one.

Note that for the sake of clarity, we explain the notion of control-
lability using a timer: it is a simple example of small device involv-
ing controllable and non-controllable inputs. However, in practice,
one would prefer leaving at least one timer non-controllable so as
to avoid latency problems when enabling the timer.

Figure @»(a) is the automaton for a timer driver. timer_init(),
timer_start(), timer_restart() and timer_stop() are low-level func-
tions updating the timer operating mode and registers. The in-

dc_on . okq /acka, adc_on()

e

adc_off . okq [acka, adc_off()

Figure 7. Controllable ADC Automaton.

i end_of calibration /
end_of _calibration

i end_of calibration

wake_up . ok, |
sleep . ok, /| acky, wake_up()

acky, sleep()

iqfifo_threshold /
refill _tx_buffer()
enter_tx . ok /
acky, enter_tx()

calibrate . ok, |
ack,, calibrate()

radio_init()

iend_of packet / exit_rx(),

enter_rx . ok, / packet received

acky, enter_rx() 7”%”4)“]{”

. exit_rx . ok,
acky, exit_rx(

"9 on_packet / on_packet()

Mend_of packet - "dfifo_threshold /
empty_rx_buffer()

Figure 8. Controllable Radio Transceiver Automaton.

PUt irqtimer_expired 1S @ hardware signal, whose meaning is the
expiration of this timer. Finally, disable and enable are input re-
quests issued by the upper software layer to drive this device, and
timer_expired is an output signal reflecting the expiration of the
timer.

Modifying this device driver so that it becomes controllable is
done by introducing additional inputs. In Figure[6}(b), the automa-
ton of Figure[6}(a) has been modified by introducing an approval
input (ok:) meaning that a transition is triggered only when both the
input request and the approval signal hold. A controller can then in-
hibit the controllable transitions of a resource by not emitting the
associated authorization. The condition enable . ok; occurring in
state Disabled is part of the implicit “else” loop; which corresponds
to the fact that the request enable has been refused.

In order to notify the requesting software that a state transition
has not been approved, additional outputs are also used (ack: in
the timer example). They are emitted when controllable transitions
are permitted. Note also that in this case (and in the sequel of this
paper), these new signals are only inhibitors (i.e., they are used by
the controller to prevent some state transitions from occurring), but
one could also augment behaviors by adding other kind of inputs.

Figure [§] describes a slightly simplified radio transceiver driver
automaton (without error handling transitions and wake on radio
feature). This automaton is used in the sequel.

4.5.2 The Controller Automaton

Given the full set of controllable device automata and some global
properties to be enforced, a controller can be designed.

Figure [0 is an example of a controller designed from the ra-
dio transceiver and ADC automata described in Figures [8| and
respectively (it only controls these two devices for clarity of the
example). This controller ensures the exclusiveness between three
energy-greedy states of the former and the operating mode of the
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Figure 9. Basic Controller Automaton.

latter, when put in parallel with them. Indeed, neither the Rx, Tx
nor Rx_Packet are reachable from all the other states of the radio
driver until ok, holds. Again, this internal input is never emitted
by the controller when a transition leading to the Adc state is trig-
gered. Conversely, the On state of the ADC is not reachable when
the radio is in one of its highly consuming modes.

4.5.3 The Compiled Automaton

Finally, the drivers automata and the controller are compiled
into a single piece of code that forms the tick, and behaves
as the product automaton. For instance, and going back to
our basic controller example, this automaton will be in state
Free_Off_ldle when the Controller, ADC and Radio will be in
Free, Off and Idle states respectively. This global state leads
to another state Adc_On_ldle through a transition with con-
dition enter_tx . enter_rx . calibrate . sleep . adc_on and outputs
ackq, adc_on().

4.6 A Complete Example Execution

We illustrate on Figure@a complete interleaving of executions be-
tween the CL and the guest layer for a simple example application,

and a reactive part comprising device automata of Figures [6-(b), 7]
and[8] along with the controller of Figure[9] The time goes from left
to right. For sake of simplicity, we trace the states of the controller,

the ADC and the radio transceiver between reactions. We also de-
pict the role of the adaptation layer in this process by describing the
software requests emitted to the CL.

The guest layer is composed of two tasks; one performs the sen-
sor management by using the ADC (T sz5ing), and the other peri-
odically operates on the radio network (T o1, rking)- Executions of
these two tasks are triggered by two distinct timers. Again, consider
the CPU is initially in one of its low power modes.

First, the hardware event irqyer, expired 0ccurs, and triggers
an execution of the reactive part. This outputs the timer, _expired
signal, and the react() function launches the associated callback.
This callback restarts the Ty ing task execution, returns, and then
the guest layer can continue its execution (the main() function calls
guest_run()).

Upon emission of a software request by this task (a call to
on_sw(adc_on)), a new reaction is triggered. Since the complete
tick automaton is in state Free_Off_ldle at this time, this input
triggers the transition taken as example in Section[d.5.3} the request
is then approved and it turns the ADC on (the low-level adc_on()
function is called). The request returns ack,, and the task stops its
execution: the main() function can then call enter_Ipm().

Ibid, when irqymery expirea Occurs and wakes up the CPU,
the task Tonyorking 15 scheduled. While computing, this task is
interrupted by an irqymer, expireq hardware event, a reaction, and
then a new call to the callback associated with timer; _expired. In
turn, this callback enables a new execution of the sensing task.
When exiting the interrupt handler, the networking task continues
its execution, and tries to put the radio transceiver in its emitting
mode (on_sw(enter_tx)). While the controller is in state Adc, it
does not allow this software request, and its result is ack, so the
networking task can choose to yield and retry later.

Afterward, the sensing task executes and turns the ADC off
(on_sw(adc_off)); the associated reaction executes the adc_off()
function, and updates the state of the controller. Eventually, the
next emission of enter_tx is permitted by the reaction part, and the
emission can succeed.

5. Extensions

The general approach we have just described can easily be extended
to treat more complex cases. We explain some of them below.



Allowing direct accesses to the hardware: In some cases, we
may need to allow direct access to the hardware resources, for some
of the guest tasks. For instance, if we use a multithreading OS as
the guest, assume the existence of a guest task that prints reports us-
ing an UART connected to the bus, directly; the task continuously
sends characters to the device, hence using the bus. Suppose now
that another device uses the same bus (for instance, the flash mem-
ory). We need some control for bus accesses, but since the task has
a direct access to the hardware, it seems this cannot be done with
our approach. In fact, it can be done by considering the task as an
additional object similar to a device. We model its behavior with a
two-state automaton (using the bus, or not) and controllable transi-
tions, and we add this automaton to the set of automata for which
we have to design a global controller. Then, we need to make sure
that this two-state automaton always reflects the real state of the
task. To do so, we implement some communication between the
controller in the CL and the scheduler of the guest system. When
the controller forbids a transition from the state “not using the bus”
to the state “using the bus” of the task model, it also communicates
with the guest scheduler, requesting him to remove the task from
the list of eligible tasks. This mechanism is such that a global in-
variant is maintained: whenever the task is running (and accessing
the bus), the CL is in state “using the bus”, which prevents other
devices from using the bus.

Best low-power mode of the MCU: Our approach can also be
extended to force the CPU to be in the best low-power mode as
possible, considering the possibilities for being woken up. Let us
take the MSP430 as an example. This micro-controller has 6 oper-
ating modes, among which: the Active mode, in which everything
is active (this is the mode with the highest consumption); the LPM4
mode (the one with the lowest consumption), in which there is no
RAM retention, the real-time clock is disabled, and the only way
to wake up is by an external interrupt; the LPM3 mode (having an
intermediate consumption) in which there is only one peripheral
clock available; the MCU can be woken up by a timer, and by ex-
ternal interrupts.

Ensuring that the MCU is always in the lowest consumption
mode, and yet can be woken up, is an instance of a global control
problem. Indeed, the MCU should not be put in its lowest consump-
tion mode, from which only an external interrupt can exit, if there
is no chance for such an external interrupt to happen. Information
on which external interrupts may occur is given by the states of
the automata that model the hardware devices. We have to model
the MCU by an automaton in which all the available mode changes
are represented by controllable transitions. The “best low-power
mode” objective can then be stated as an invariant property (avoid
some global states), plus a quality objective that can be taken into
account when designing the controller.

6. Implementation

In order to show that our proposal is realistic, we have implemented
the CL on top of the hardware architecture described in Section 3]
We have tested it using the cycle-accurate platform and network
simulator provided with the Worldsens tools [14].

Implementation of the Reactive Part: According to what has
been described in Section [2] we have implemented a reasonable
and usable set of device drivers so as to build up a working CL on
top of the Wsn430 hardware platform. The reactive part has been
implemented using the SCADE industrial tool-chain [[12].

We have manually designed a controller for all the devices and
resources of the platform. It ensures simple safety properties like
state exclusions for shared resource management (e.g., the flash
memory and RS232 link resources use the same serial module with
distinct modes on the Wsn430 platform), as well as reduction of

current consumption peaks by avoiding reachability of global states
when two or more peripherals (such as ADC and radio transceiver)
are in their highest consumption modes.

Guest Layers: Regarding the guest layer, we have ported two
operating systems that could also run on the bare hardware, onto
our CL implementation.

Targeting Contiki: The adaptation of Contiki [[10] required writ-
ing a set of device drivers dedicated to the abstract hardware ex-
posed by the CL. The writing of these drivers is easy, whatsoever
the strategy for handling rejected requests is: one could choose to
retry requests after a given time, or return a dedicated error code to
let the application processes select a more suitable strategy.

Targeting a Multithreading Operating System: The second op-
erating system ported onto the CL is a priority-based preemptive
multithreading kernel we designed from scratc}ﬂ Writing adapted
device drivers in this guest was similar to writing those of Con-
tiki, except for the task management and synchronization parts, as
a result of the change of concurrency model.

7. Discussion and Evaluation

The technical elements we have described constitute a complete
proof of concept, for the implementation of centralized resource
control policies in a paravirtualization framework. The implemen-
tation runs on top of a quite detailed emulator, which is a reason-
able guarantee that it will also work on the real hardware. However,
providing global property enforcement necessarily introduces some
computation and memory overhead. In order to show that the pro-
posed solution is practicable, we estimate this overhead compared
to available data about existing OSes for WSNs.

Evaluation of our solution: The memory footprint of the tick is
about 1.5 to 2 KB (recall that the size of the tick is linear in the
size of the individual automata descriptions, as stated in Section[2).
Stack space required for its computation is about 100 bytes, but
it could be shared among threads in case of multithreading guest,
since there is always at most one guest task running the react()
function at a time. Other parts of the CL mainly consist in the low-
level code of the device drivers that would be in the guest otherwise.
Rough implementation of the code and static data structures related
to the interaction between this low-level code, the guest, and the
tick occupies 1 KB.

The time overhead involved by running one step of the compiled
automata of the tick depends on the input events and requests: it
takes at most 1,600 cycles (2005 on an MSP430 clocked at SMHz)
in our current implementation.

| TinyOS-1.1 (kernel) | TinyOS-1.1 | RETOS | MtK/CL
ROM T2 KB 21KB | 23.1KB | 24KB
RAM 311B 798 B 824B | 806B

Table 1. Memory footprint of some existing OSes for WSNs, with
various sensor drivers and network modules (data taken from [6]).
The “MtK/CL” column represents ROM footprint of our multi-
threading kernel and CL implementation.

Comparison with existing solutions: Due to the lack of reference
figures regarding memory overhead and computation time involved
by existing solutions for global control in WSN OSes, we evaluate
the overhead of our solution by comparing it to solutions without
such control. We sum up in Table [I] the typical memory footprint

! Actually, we first tried to design this operating system having our device
driver model in mind. Observations about the paravirtualized nature of it
came later.



of some already existing OSes for WSNs. Compared to these re-
sults, our solution involves a code size increase of less than 10%.
This memory overhead is very realistic w.x.t. the benefits of global
resource control that our approach can manage.

ICEM with n arbiters & m power managers |  tick
< 350n + 400m | ~ 1,600

Table 2. Typical cycle overhead of ICEM decentralized shared
resource arbiters and device power managers, compared to our
global control implementation.

Table [2] compares cycle overheads of decentralized control in
the ICEM framework [18] and our proposal. The overhead intro-
duced by our solution for global control and power management is
reasonable, even if the tick is run each time a resource state change
can occur.

Discussion: The results show that our solution for global control
is very practical, even though it involves an overhead, both in terms
of memory usage and computation cycles.

However, when time and memory really matter, one could take
advantage of the synchronous nature of the tick so as to imple-
ment it efficiently in a dedicated hardware module. Other ways to
improve these results would be to design a dedicated compilation
scheme of synchronous programs for memory constrained systems.
Guest operating systems code could also be further reduced by tak-
ing advantage of the properties enforced by an underlying CL.

Furthermore, developing a device driver for the CL having the
associated automaton in mind, reveals itself simpler than for classi-
cal OSes. Such development is easier using our approach, where a
clear distinction is made between low-level code that affects device
operating modes, and effective application code.

8. Related Work

Operating Systems for WSNs: Whereas originally designed for
classical real-time embedded systems, MANTIS [5] has been
ported to some motes. It is a priority-based preemptive multi-
threaded operating system and has shown the power of this con-
currency model for wireless sensor networks by enabling imple-
mentation of lengthy tasks. RETOS [6] and Nano-RK [13] are also
multithreaded operating systems. However, neither MANTIS nor
RETOS provide support for global resource management. Nano-
RK provides static reservation mechanisms for energy and timing
management of applications.

TinyOS [17] is the most widely known operating system for
WSNs. It is fully component-based, event-driven and based on the
NesC language [15], thus facilitating composition and reuse of pre-
viously written code. Component connections express the overall
structure of the operating system along with the application. Nev-
ertheless, building complex applications exploiting a broad range
of the available devices supplied by a mote implies using dozens of
components, hence leading to component bindings and interactions
that are hard to apprehend globally.

Energy management for WSN nodes: Several works already
addressed the problem of energy management within a WSN node
by means of a dedicated device driver architecture. We briefly
describe here the ones that are close to our proposal.

[L8] presents the solution promoted within TinyOS. It consists
in addressing both concurrency and energy requirements in a single
framework called ICEM, a core component of TinyOS 2.0. The key
idea behind ICEM is to offer a driver interface based on (potentially
concurrent) application I/O requests to better control devices power
states. From the application point of view, this concurrency level
can be expressed by means of distinct driver classes. Virtualized

drivers allow implicit concurrency between multiple users. Client
requests are buffered and scheduled according to some desired
properties (e.g., fairness), and a per-client state is maintained to
control the device power state. Shared drivers also support multiple
users, but they offer a lower level of interface in terms of (power)
locks: each client should acquire a lock before using a shared
driver. A special component, the power manager, is responsible
for implementing the energy management policy of a shared driver
(e.g., powering off this driver as soon as its associated lock is idle).
ICEM’s architecture leads to a decentralized energy and resource
management scheme, split inside each driver class.

In [9], Choi et al. suggested a global device driver architecture
dedicated to multithreaded sensor network operating systems. This
architecture provides also three kinds of driver models (offering
several trade-offs between performance and complexity), and some
global operating system services to control shared access and en-
ergy consumption through a so-called device manager. This control
is performed by means of a fixed set of dedicated request functions
(either non blocking, or with a specified waiting time). Thanks to a
centralized data structure indicating the current state of each device
(and some specific device control functions) the device manager
can assign the best suitable low-power state to the MCU and each
hardware elements.

Although this proposal is closed to our work in the sense that
it offers a global control, it suffers from some drawbacks and
limitations. The multithreaded device manager certainly becomes
harder to write as soon as the number of devices grows. Liveness
problems may also occur, and not all devices are controlled (e.g.,
the timers are left uncontrolled, however, they can impact the best
low-power mode).

Other approaches has been proposed where the application
logic is not involved in resource management decisions. ECOSys-
tem [235] is a general purpose operating system that integrates an
explicit notion of “energy resource” into the scheduling mechanism
of shared system devices. Eon [22] can be viewed as an energy-
aware data-flow programming language, where flow paths within
programs are annotated with energy states by the programmer.
Then, at runtime, Eon “adapts” the application code by selecting a
suitable dataflow path according to current energy availability.

Pixie OS [19] is a more recent operating system dedicated to
sensor nodes. It borrows some ideas from ECOSystem and Eon.
Its purpose is to enable some resource-aware programming model
with respect to energy, radio bandwidth, storage, etc. It relies on
a dataflow model plus a notion of resource tickets to abstract the
allocation of physical resources. Resource management policies
can be enforced by means of (dedicated) resource brokers that
deliver resource tickets to the application. The notion of “broker”
is rather close to the global controller we propose. However, it
differs in several points: first, brokers are dedicated to specific
resources, meaning that a broker competition could be necessary
to enforce global properties (related to several resources); second,
correctly estimating an energy quantum for a given work unit could
be a difficult task, and a too conservative approach could degrade
the node performance; finally, there is no general technique for
designing a “correct” broker with respect to a given policy (like
the automated control approach we propose).

Automated control and operating systems: The research com-
munity on computing systems, in particular operating and dis-
tributed systems, has been showing interest for the use of control
theory for some years now. [1]] is a very good introduction to the
field, and exposes several applications, among which power con-
trol.

Formal models for driver design: 1In [23], formal models of
drivers are used as an abstract specification, from which the code



can be produced. The whole approach is comparable to our use of
automata labeled by function calls for the low-level programs.

In [8]], formal models are used to map a MAC algorithm on top
of a complex radio device; the radio device has more states than the
functional states that matter for the software. The proposed method
may allow, for instance, to specify in the MAC algorithm that the
radio should go from idle to transmit mode; the formal model of
the radio device is then used to transform this functional behavior
into a more complex behavior of the radio, which needs to go
through various states of different energy levels between idle and
transmit. The mapping algorithm can probably be formulated as a
control objective, with controlled events forcing transitions instead
of inhibiting them, but this would need further investigation.

9. Conclusions and Further Work

We proposed a software architecture for embedded systems, allow-
ing for global control of the hardware devices. It requires a slight
adaptation of the application software, but does not change the way
it is designed and programmed. As an example, we demonstrated
the use of Contiki and a multithreading operating system on top of
our software architecture.

The advantages of the approach are: (i) a clear expression of the
global control objectives, that helps designing the global controller;
(ii) the use of a synchronous language for the control layer, which
makes it possible to compile the set of drivers and the controller
into a piece of statically-scheduled efficient code; (iii) the easy
extensibility of an existing control layer.

Further work will be devoted to several classes of extensions.
We will adapt widespread operating systems such as TinyOS or
MANTIS, so as to be able to run the large amount of already
written applications, on top of our control layer. We will also look
at situations in which the applications may need to book some
resources in advance, to prevent their requests from being canceled;
this can be done with more complex automata for the resources, but
essentially the same kind of controller as presented in this paper.

Finally, another branch of research would be to implement the
whole software of a node in some synchronous language, and to
perform static analysis and then static scheduling. When the ap-
plication is written using event-driven programming, as in TinyOS
for instance, it would not change the practice a lot to write it in
the kind of automaton-based language we used here (the automata
exchange signals in a synchronous way to express the synchroniza-
tion, and this mechanism is indeed compiled; their transitions are
also labeled by calls to pure C code, allowing for an easy reuse
of, e.g., the protocol stack). This would provide both: structured
event-driven programming with no additional runtime cost, and a
formal model of the whole system that can be analyzed before it is
deployed.
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